Skip to main content
Log in

Using a silver-enhanced microarray sandwich structure to improve SERS sensitivity for protein detection

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A simple and sensitive method, based on surface-enhanced Raman scattering (SERS), for immunoassay and label-free protein detection is reported. A series of bowl-shaped silver cavity arrays were fabricated by electrodeposition using a self-assembled polystyrene spheres template. The reflection spectra of these cavity arrays were recorded as a function of film thickness, and then correlated with SERS enhancement using sodium thiophenolate as the probe molecule. The results reveal that SERS enhancement can be maximized when the frequency of both the incident laser and the Raman scattering approach the frequency of the localized surface plasmon resonance. The optimized array was then used as the bottom layer of a silver nanoparticle–protein–bowl-shaped silver cavity array sandwich. The second layer of silver was introduced by the interactions between the proteins in the middle layer of the sandwich architecture and silver nanoparticles. Human IgG bound to the surface of this microcavity array can retain its recognition function. With the Raman reporter molecules labeled on the antibody, a detection limit down to 0.1 ng mL−1 for human IgG is easily achieved. Furthermore, the SERS spectra of label-free proteins (catalase, cytochrome C, avidin and lysozyme) from the assembled sandwich have excellent reproducibility and high quality. The results reveal that the proposed approach has potential for use in qualitative and quantitative detection of biomolecules.

Schematic diagram of sandwich structure for labelled and label-free protein detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kingsmore SF (2006) Nat Rev Drug Discov 5:310–321

    Article  CAS  Google Scholar 

  2. Kahraman M, Sur I, Culha M (2010) Anal Chem 82:7596–7602

    Article  CAS  Google Scholar 

  3. Isola NR, Stokes DL, Vo-Dinh T (1998) Anal Chem 70:1352–1356

    Article  CAS  Google Scholar 

  4. Li J, Zhang Z, Rosenzweig J, Wang YY, Chan DW (2002) Clin Chem 48:1296–1304

    CAS  Google Scholar 

  5. Washam CL, Byrum SD, Leitzel K, Ali SM, Tackett AJ, Gaddy D, Sundermann SE, Lipton A, Suva LJ (2013) Cancer Epidem Biomar 22:972–983

    Article  CAS  Google Scholar 

  6. Royer CA (2006) Chem Rev 106:1769–1784

    Article  CAS  Google Scholar 

  7. Cao Y-C, Hua X-F, Zhu X-X, Wang Z, Huang Z-L, Zhao Y-D, Chen H, Liu M-X (2006) J Immunol Methods 317:163–170

    Article  CAS  Google Scholar 

  8. Barlag RE, Halsall HB, Heineman WR (2013) Anal Bioanal Chem 405:3541–3547

    Article  CAS  Google Scholar 

  9. Lin D, Wu J, Ju H, Yan F (2013) Biosens Bioelectron 45:195–200

    Article  CAS  Google Scholar 

  10. Wang Z, Lee J, Cossins AR, Brust M (2005) Anal Chem 77:5770–5774

    Article  CAS  Google Scholar 

  11. Homola J (2008) Chem Rev 108:462–493

    Article  CAS  Google Scholar 

  12. Rohr TE, Cotton T, Fan N, Tarcha PJ (1989) Anal Biochem 182:388–398

    Article  CAS  Google Scholar 

  13. Cui Y, Ren B, Yao J-L, Gu R-A, Tian Z-Q (2006) J Phys Chem B 110:4002–4006

    Article  CAS  Google Scholar 

  14. Cui Y, Ren B, Yao J-L, Gu R-A, Tian Z-Q (2007) J Raman Spectrosc 38:896–902

    Article  CAS  Google Scholar 

  15. Manimaran M, Jana NR (2007) J Raman Spectrosc 38:1326–1331

    Article  CAS  Google Scholar 

  16. Han XX, Cai LJ, Guo J, Wang CX, Ruan WD, Han WY, Xu WQ, Zhao B, Ozaki Y (2008) Anal Chem 80:3020–3024

    Article  CAS  Google Scholar 

  17. Han XX, Kitahama Y, Tanaka Y, Guo J, Xu WQ, Zhao B, Ozaki Y (2008) Anal Chem 80:6567–6572

    Article  CAS  Google Scholar 

  18. Han XX, Zhao B, Ozaki Y (2009) Anal Bioanal Chem 394:1719–1727

    Article  CAS  Google Scholar 

  19. Han XX, Xie Y, Zhao B, Ozaki Y (2010) Anal Chem 82:4325–4328

    Article  CAS  Google Scholar 

  20. Chen L, Han X, Yang J, Zhou J, Song W, Zhao B, Xu W, Ozaki Y (2011) J Colloid Interface Sci 360:482–487

    Article  CAS  Google Scholar 

  21. Chen L, Park Y, Seo H, Hong W, Jung YM, Zhao B (2011) J Raman Spectrosc 42:1963–1966

    Article  CAS  Google Scholar 

  22. Granger JH, Granger MC, Firpo MA, Mulvihill SJ, Porter MD (2013) Analyst 138:410–416

    Article  CAS  Google Scholar 

  23. Guarrotxena N, Liu B, Fabris L, Bazan GC (2010) Adv Mater 22:4954–4958

    Article  CAS  Google Scholar 

  24. Guarrotxena N, Braun G (2012) J Nanopart Res 14:1–8

    Article  Google Scholar 

  25. Koglin E, Sequaris JM, Valenta P (1980) J Mol Struct 60:421–425

    Article  CAS  Google Scholar 

  26. Cotton TM, Schultz SG, Van Duyne RP (1980) J Am Chem Soc 102:7960–7962

    Article  CAS  Google Scholar 

  27. Kneipp K, Kneipp H, Itzkan I, Dasari RR, Feld MS (1999) Chem Rev 99:2957–2976

    Article  CAS  Google Scholar 

  28. Giljohann DA, Seferos DS, Daniel WL, Massich MD, Patel PC, Mirkin CA (2010) Angew Chem Int Ed 49:3280–3294

    Article  CAS  Google Scholar 

  29. Saha K, Agasti SS, Kim C, Li X, Rotello VM (2012) Chem Rev 112:2739–2779

    Article  CAS  Google Scholar 

  30. Dick LA, McFarland AD, Haynes CL, Van Duyne RP (2001) J Phys Chem B 106:853–860

    Article  Google Scholar 

  31. Yu Q, Guan P, Qin D, Golden G, Wallace PM (2008) Nano Lett 8:1923–1928

    Article  CAS  Google Scholar 

  32. Hong G, Li C, Limin Q (2010) Adv Funct Mater 20:3774–3783

    Article  CAS  Google Scholar 

  33. Bartlett PN, Baumberg JJ, Birkin PR, Ghanem MA, Netti MC (2002) Chem Mater 14:2199–2208

    Article  CAS  Google Scholar 

  34. Bartlett PN, Baumberg JJ, Coyle S, Abdelsalam ME (2004) Faraday Discuss 125:117–132

    Article  CAS  Google Scholar 

  35. Abdelsalam M, Bartlett PN, Russell AE, Baumberg JJ, Calvo EJ, Tognalli NSG, Fainstein A (2008) Langmuir 24:7018–7023

    Article  CAS  Google Scholar 

  36. Johnson RP, Richardson JA, Brown T, Bartlett PN (2012) J Am Chem Soc 134:14099–14107

    Article  CAS  Google Scholar 

  37. Mahajan S, Richardson J, Brown T, Bartlett PN (2008) J Am Chem Soc 130:15589–15601

    Article  CAS  Google Scholar 

  38. Huang FM, Wilding D, Speed JD, Russell AE, Bartlett PN, Baumberg JJ (2011) Nano Lett 11:1221–1226

    Article  CAS  Google Scholar 

  39. Tian S, Zhou Q, Li C, Gu Z, Lombardi JR, Zheng J (2012) J Phys Chem C 117:556–563

    Article  Google Scholar 

  40. Lee PC, Meisel D (1982) J Phys Chem 86:3391–3395

    Article  CAS  Google Scholar 

  41. Baumberg JJ, Kelf TA, Sugawara Y, Cintra S, Abdelsalam ME, Bartlett PN, Russell AE (2005) Nano Lett 5:2262–2267

    Article  CAS  Google Scholar 

  42. Cole RM, Baumberg JJ, Garcia de Abajo FJ, Mahajan S, Abdelsalam M, Bartlett PN (2007) Nano Lett 7:2094–2100

    Article  CAS  Google Scholar 

  43. Mahajan S, Abdelsalam M, Suguwara Y, Cintra S, Russell A, Baumberg J, Bartlett P (2007) PCCP 9:104

    Article  CAS  Google Scholar 

  44. Tian S, Zhou Q, Gu Z, Gu X, Zheng J (2013) Analyst 138:2604–2612

    Article  CAS  Google Scholar 

  45. Joo TH, Kim MS, Kim K (1987) J Raman Spectrosc 18:57–60

    Article  CAS  Google Scholar 

  46. Han SW, Lee SJ, Kim K (2001) Langmuir 17:6981–6987

    Article  CAS  Google Scholar 

  47. Szafranski CA, Tanner W, Laibinis PE, Garrell RL (1998) Langmuir 14:3570–3579

    Article  CAS  Google Scholar 

  48. Osawa M, Matsuda N, Yoshii K, Uchida I (1994) J Phys Chem 98:12702–12707

    Article  CAS  Google Scholar 

  49. Lombardi JR, Birke RL (2009) Acc Chem Res 42:734–742

    Article  CAS  Google Scholar 

  50. Haynes CL, Van Duyne RP (2003) J Phys Chem B 107:7426–7433

    Article  CAS  Google Scholar 

  51. Abdelsalam ME, Mahajan S, Bartlett PN, Baumberg JJ, Russell AE (2007) J Am Chem Soc 129:7399–7406

    Article  CAS  Google Scholar 

  52. Félidj N, Aubard J, Lévi G, Krenn JR, Salerno M, Schider G, Lamprecht B, Leitner A, Aussenegg FR (2002) Phys Rev B 65:075419

    Article  Google Scholar 

  53. Lin X-M, Cui Y, Xu Y-H, Ren B, Tian Z-Q (2009) Anal Bioanal Chem 394:1729–1745

    Article  CAS  Google Scholar 

  54. Doering WE, Nie S (2003) Anal Chem 75:6171–6176

    Article  CAS  Google Scholar 

  55. Rosi NL, Mirkin CA (2005) Chem Rev 105:1547–1562

    Article  CAS  Google Scholar 

  56. Han XX, Huang GG, Zhao B, Ozaki Y (2009) Anal Chem 81:3329–3333

    Article  CAS  Google Scholar 

  57. Keskin S, Culha M (2012) Analyst 137:2651–2657

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from the Nature Science Foundation of China (Nos. 21177067,21173122, 21201105), Natural Science Foundation of Jiangsu Province (BK20131200), and Scientific and Technological Innovation Projects of Nantong City (HS2012006, BK2012012) are gratefully acknowledged. We would like to thank Dr Lei Chen for his assistance in this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian Shi or Shu Tian.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1.91 mb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gu, X., Yan, Y., Jiang, G. et al. Using a silver-enhanced microarray sandwich structure to improve SERS sensitivity for protein detection. Anal Bioanal Chem 406, 1885–1894 (2014). https://doi.org/10.1007/s00216-013-7587-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-013-7587-5

Keywords

Navigation