Skip to main content
Log in

Isolation and quantification of messenger RNA from tissue models by using a double-barrel carbon probe

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In this study, we introduce the double-barrel carbon probe (DBCP)—a simple, affordable microring electrode—which enables the collection and analysis of single cells independent of cellular positioning. The target cells were punctured by utilizing an electric pulse between the two electrodes in DBCP, and the cellular lysates were collected by manual aspiration using the DBCP. The mRNA in the collected lysate was evaluated quantitatively using real-time PCR. The histograms of single-cell relative gene expression normalized to GAPDH were fit to a theoretical lognormal distribution. In the tissue culture model, we focused on angiogenesis to prove that multiple gene expression analysis was available. Finally, we applied DBCP for the embryonic stem (ES) cell-derived cardiomyocytes to substantiate the capability of the probe to collect cells, even from high-volume samples such as spheroids. This method achieves high sensitivity for mRNA at the single-cell level and is applicable in the analysis of various biological samples independent of cellular positioning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Buganim Y, Faddah DA, Cheng AW, Itskovich E, Markoulaki S, Ganz K, Klemm SL, van Oudenaarden A, Jaenisch R (2012) Single-Cell Expression Analyses during Cellular Reprogramming Reveal an Early Stochastic and a Late Hierarchic Phase. Cell 150(6):1209–1222. doi:10.1016/j.cell.2012.08.023

    Article  CAS  Google Scholar 

  2. Yu M, Stott S, Toner M, Maheswaran S, Haber DA (2011) Circulating tumor cells: approaches to isolation and characterization. J Cell Biol 192(3):373–382. doi:10.1083/jcb.201010021

    Article  CAS  Google Scholar 

  3. Ramskold D, Luo SJ, Wang YC, Li R, Deng QL, Faridani OR, Daniels GA, Khrebtukova I, Loring JF, Laurent LC, Schroth GP, Sandberg R (2012) Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells. Nat Biotechnol 30(8):777–782. doi:10.1038/nbt.2282

    Article  Google Scholar 

  4. Dalerba P, Kalisky T, Sahoo D, Rajendran PS, Rothenberg ME, Leyrat AA, Sim S, Okamoto J, Johnston DM, Qian DL, Zabala M, Bueno J, Neff NF, Wang JB, Shelton AA, Visser B, Hisamori S, Shimono Y, van de Wetering M, Clevers H, Clarke MF, Quake SR (2011) Single-cell dissection of transcriptional heterogeneity in human colon tumors. Nat Biotechnol 29(12):1120–U1111. doi:10.1038/nbt.2038

    Article  CAS  Google Scholar 

  5. Powell AA, Talasaz AH, Zhang HY, Coram MA, Reddy A, Deng G, Telli ML, Advani RH, Carlson RW, Mollick JA, Sheth S, Kurian AW, Ford JM, Stockdale FE, Quake SR, Pease RF, Mindrinos MN, Bhanot G, Dairkee SH, Davis RW, Jeffrey SS (2012) Single Cell Profiling of Circulating Tumor Cells: Transcriptional Heterogeneity and Diversity from Breast Cancer Cell Lines. PLoS One 7:5. doi:10.1371/journal.pone.0033788

    Google Scholar 

  6. Spurgeon SL, Jones RC, Ramakrishnan R (2008) High Throughput Gene Expression Measurement with Real Time PCR in a Microfluidic Dynamic Array. PLoS One 3(2):7. doi:10.1371/journal.pone.0001662

    Article  Google Scholar 

  7. Citri A, Pang ZP, Sudhof TC, Wernig M, Malenka RC (2012) Comprehensive qPCR profiling of gene expression in single neuronal cells. Nature Protocols 7(1):118–127. doi:10.1038/nprot.2011.430

    Article  CAS  Google Scholar 

  8. Sanchez-Freire V, Ebert AD, Kalisky T, Quake SR, Wu JC (2012) Microfluidic single-cell real-time PCR for comparative analysis of gene expression patterns. Nature Protocols 7(5):829–838. doi:10.1038/nprot.2012.021

    Article  CAS  Google Scholar 

  9. Schutze K, Lahr G (1998) Identification of expressed genes by laser-mediated manipulation of single cells. Nat Biotechnol 16(8):737–742. doi:10.1038/nbt0898-737

    Article  CAS  Google Scholar 

  10. EmmertBuck MR, Bonner RF, Smith PD, Chuaqui RF, Zhuang ZP, Goldstein SR, Weiss RA, Liotta LA (1996) Laser capture microdissection. Science 274(5289):998–1001. doi:10.1126/science.274.5289.998

    Article  CAS  Google Scholar 

  11. Nashimoto Y, Takahashi Y, Yamakawa T, Torisawa YS, Yasukawa T, Ito-Sasaki T, Yokoo M, Abe H, Shiku H, Kambara H, Matsue T (2007) Measurement of gene expression from single adherent cells and spheroids collected using fast electrical lysis. Analytical Chem 79(17):6823–6830. doi:10.1021/ac071050q

    Article  CAS  Google Scholar 

  12. Takahashi Y, Shevchuk AI, Novak P, Zhang YJ, Ebejer N, Macpherson JV, Unwin PR, Pollard AJ, Roy D, Clifford CA, Shiku H, Matsue T, Klenerman D, Korchev YE (2011) Multifunctional Nanoprobes for Nanoscale Chemical Imaging and Localized Chemical Delivery at Surfaces and Interfaces. Angew Chem Int Ed 50(41):9638–9642. doi:10.1002/anie.201102796

    Article  CAS  Google Scholar 

  13. Ino K, Ono K, Arai T, Takahashi Y, Shiku H, Matsue T (2013) Carbon-Ag/AgCl Probes for Detection of Cell Activity in Droplets. Analytical Chem 85(8):3832–3835. doi:10.1021/ac303569t

    Article  CAS  Google Scholar 

  14. Kubota Y, Kleinman HK, Martin GR, Lawley TJ (1988) Role of Laminin And Basement-Membrane In The Morphological-Differentiation of Human-Endothelial Cells Into Capillary-Like Structures. J Cell Biol 107(4):1589–1598. doi:10.1083/jcb.107.4.1589

    Article  CAS  Google Scholar 

  15. Arnaoutova I, Kleinman HK (2010) In vitro angiogenesis: endothelial cell tube formation on gelled basement membrane extract. Nature Protocols 5(4):628–635. doi:10.1038/nprot.2010.6

    Article  CAS  Google Scholar 

  16. Phng LK, Gerhardt H (2009) Angiogenesis: A Team Effort Coordinated by Notch. Dev Cell 16(2):196–208. doi:10.1016/j.devcel.2009.01.015

    Article  CAS  Google Scholar 

  17. Blanco R, Gerhardt H (2013) VEGF and Notch in tip and stalk cell selection. Cold Spring Harbor Perspect Med 3(1):a006569. doi:10.1101/cshperspect.a006569

    Article  Google Scholar 

  18. Arnaoutova I, George J, Kleinman HK, Benton G (2009) The endothelial cell tube formation assay on basement membrane turns 20: state of the science and the art. Angiogenesis 12(3):267–274. doi:10.1007/s10456-009-9146-4

    Article  Google Scholar 

  19. Bengtsson M, Stahlberg A, Rorsman P, Kubista M (2005) Gene expression profiling in single cells from the pancreatic islets of Langerhans reveals lognormal distribution of mRNA levels. Genome Res 15(10):1388–1392. doi:10.1101/gr.3820805

    Article  CAS  Google Scholar 

  20. Bikfalvi A, Cramer EM, Tenza D, Tobelem G (1991) Phenotypic Modulations of Human Umbilical Vein Endothelial-Cells And Human Dermal Fibroblasts Using 2 Angiogenic Assays. Biol Cell 72(3):275–278. doi:10.1016/0248-4900(91)90298-2

    Article  CAS  Google Scholar 

  21. Parsa H, Upadhyay R, Sia SK (2011) Uncovering the behaviors of individual cells within a multicellular microvascular community. Proc Natl Acad Sci U S A 108(12):5133–5138. doi:10.1073/pnas.1007508108

    Article  CAS  Google Scholar 

  22. Pollman MJ, Naumovski L, Gibbons GH (1999) Endothelial cell apoptosis in capillary network remodeling. J Cell Physiol 178(3):359–370. doi:10.1002/(sici)1097-4652(199903)178:3<359::aid-jcp10>3.0.co;2-o

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was partially supported by the Cabinet Office, Government of Japan, through its “Funding Program for Next Generation World-Leading Researchers” (to H.S) and by a Grant-in-Aid for Advanced Measurement and Analysis from the Japan Science and Technology Agency (JST). Y.N acknowledges the support obtained from a research fellowship of the Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hitoshi Shiku or Tomokazu Matsue.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 300 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nashimoto, Y., Takahashi, Y., Takano, R. et al. Isolation and quantification of messenger RNA from tissue models by using a double-barrel carbon probe. Anal Bioanal Chem 406, 275–282 (2014). https://doi.org/10.1007/s00216-013-7430-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-013-7430-z

Keywords

Navigation