Skip to main content
Log in

In situ alcoholysis of triacylglycerols by application of switchable-polarity solvents. A new derivatization procedure for the gas-chromatographic analysis of vegetable oils

  • Note
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

We describe a new use of switchable-polarity solvents for the simultaneous derivatization and extraction of triacylglycerols from vegetable oils before gas-chromatographic analysis. Different equimolecular mixtures of the commercially available amidine 1,8-diazabicyclo[5.4.0]undec-7-ene and n-alkyl alcohols were tested. Triolein was used as a model compound. Very good results were achieved by using butanol (recovery of butyl oleate was 89 ± 4 %). The procedure was applied for the characterization of the fatty acid profile of different vegetable oils. No statistically significant differences from the results obtained with the application of two traditional methods were evidenced. Moreover, the use of switchable-polarity solvents showed many advantages: owing to the basicity of the amidines, no catalyst was required; the transterification reaction was conducted under mild conditions, one step and in situ; no particular matrix interferences were evidenced; the solvent was recovered.

Switchable polarity solvents perform the simultaneous extraction and transesterification of triacylglycerols from vegetable oils. The method represent a new in situ derivatization procedure for the gas chromatographic characterization of thir fatty acid profiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Eckey EW (1954) Vegetable fats and oils. Reinhold Publishing, New York, p 51

    Google Scholar 

  2. Dodds ED, McCoy MR, Rea LD, Kennish JM (2005) Lipids 40:419–428

    Article  CAS  Google Scholar 

  3. Metcalfe LD, Schmitz AA (1961) Anal Chem 33:363–364

    Article  CAS  Google Scholar 

  4. Morrison WR, Smith LM (1964) J Lipid Res 53:600–608

    Google Scholar 

  5. Carrapiso AI, García C (2000) Lipids 35:1167–1177

    Article  CAS  Google Scholar 

  6. Marx F, Stender A (1997) Lipids 99:25–28

    Article  CAS  Google Scholar 

  7. Craig BM, Tulloch AP, Murty NL (1963) J Am Oil Chem Soc 40:61–63

    Article  CAS  Google Scholar 

  8. Taber DF, Gerstenhaber D, Zhao X (2006) Tetrahedron Lett 47:3065–3066

    Article  CAS  Google Scholar 

  9. Hallmann C, van Aarssen BGK, Grice K (2008) J Chromatogr A 14:1198–1199

    Google Scholar 

  10. Woo KL, Kim JL (1999) J Chromatogr A 862:199–208

    Article  CAS  Google Scholar 

  11. Christie WW (2003) Lipid analysis. Isolation, separation, identification and structural analysis of lipids, 3rd edn. The Oily Press, Bridgewater

    Google Scholar 

  12. Byrdwell WC (2001) Lipids 36:327–346

    Article  CAS  Google Scholar 

  13. Bosque-Sendra JM, Cuadros-Rodriguez L, Ruiz-Samblas CA, de la Mata P (2012) Anal Chim Acta 724:1–11

    Article  CAS  Google Scholar 

  14. Ruiz-Samblás C, Cuadros-Rodríguez L, González-Casado A, de Paula Rodríguez García F, de la Mata-Espinosa P, Bosque-Sendra JM (2011) Anal Bioanal Chem 399:2093–2103

    Article  Google Scholar 

  15. Byrdwell WC, Emken EA (1995) Lipids 30:173–175

    Article  CAS  Google Scholar 

  16. Kovacevic B, Maksic ZB (2001) Org Lett 3:1523–1526

    Article  CAS  Google Scholar 

  17. Schuchardt U, Vargas RM, Gelbard G (1996) J Mol Catal A 109:37–44

    Article  CAS  Google Scholar 

  18. Gelbard G, Vielfaure-Joly F (1998) Tetrahedron Lett 39:2743–2746

    Article  CAS  Google Scholar 

  19. Venkat Reddy CR, Fetterly BM, Verkade JG (2007) Energy Fuel 21:2466–2472

    Article  Google Scholar 

  20. Peter S, Weidner E (2007) Eur J Lipid Sci Technol 109:11–16

    Article  CAS  Google Scholar 

  21. Schuchardt U, Lopes OC (1988) J Am Oil Chem Soc 65:1940–1941

    Article  CAS  Google Scholar 

  22. Jessop PG, Heldebrant DJ, Xiaowang L, Eckert CA, Liotta CL (2005) Nature 436:1102

    Article  CAS  Google Scholar 

  23. Phan L, Brown H, White J, Hodgson A, Jessop PG (2009) Green Chem 11:53–59

    Article  CAS  Google Scholar 

  24. Samorì C, Torri C, Samorì G, Fabbri D, Galletti P, Guerrini F, Pistocchi R, Tagliavini E (2010) Bioresour Technol 101:3274–3279

    Article  Google Scholar 

  25. Phan L, Chiu D, Heldebrant DJ, Huttenhower H, John E, Li X, Pollet P, Wang R, Eckert CA, Liotta CL, Jessop PG (2008) Ind Eng Chem Res 47:539–545

    Article  CAS  Google Scholar 

  26. Joseph JD, Ackman RG (1992) J AOAC Int 75:488–506

    CAS  Google Scholar 

  27. Dourtoglou T, Stefanou E, Lalas S, Dourtoglou V, Poulosc C (2001) Analyst 126:1032–1036

    Article  CAS  Google Scholar 

  28. Heldebrant DJ, Jessop PG, Thomas CJ, Eckert CA, Liotta CL (2005) J Org Chem 70:5335–5338

    Article  CAS  Google Scholar 

  29. Rusch GM, Hoffmann GM, McConnell RF, Rinehart WE (1986) Toxicol Appl Pharmacol 83:69–78

    Article  CAS  Google Scholar 

  30. Orgambide GG, Reusch NN, Dazzo FB (1993) J Bacteriol 17:4922–4926

    Google Scholar 

  31. Yurawecz MP, Molina AA, Mossoba M, Ku Y (1993) J Am Oil Chem Soc 70:1093–1099

    Article  CAS  Google Scholar 

  32. Kodad O, Socias R (2008) J Agric Food Chem 56:4096–4101

    Article  CAS  Google Scholar 

  33. Moayedi A, Rezaei K, Moini S, Keshavarz B (2011) J Am Oil Chem Soc 88:503–508

    Article  CAS  Google Scholar 

  34. Abdallah A, Ahumada MH, Gradziel TM (1998) J Am Soc Hortic Sci 123:1029–1033

    CAS  Google Scholar 

  35. Belcadi-Haloui R, Zekhnini A, Hatimi A (2008) Acta Bot Gallica 155:301–305

    Article  CAS  Google Scholar 

  36. Charrouf Z, Guillaume D (2008) Eur J Lipid Sci Technol 110:632–636

    Article  CAS  Google Scholar 

  37. Azrina A, Lim PH, Amin I, Zulkhairi A (2009) J Food Agric Environ 7:256–262

    CAS  Google Scholar 

  38. Tan BK, Hamilton RJ, Berger KG (1981) J Am Oil Chem Soc 58:1–5

    Article  CAS  Google Scholar 

  39. Ayorinde FO, Garvin K, Saeed K (2000) Rapid Commun Mass Spectrom 14:608–615

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Ilaria Piga Serra, Melody Rose DeSanto, and our students Andrea Bosiso and Javier Gomez for their collaboration. This work was supported by University of Milan-Bicocca Far 2012. Two anonymous reviewers are also thanked for comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Saliu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saliu, F., Orlandi, M. In situ alcoholysis of triacylglycerols by application of switchable-polarity solvents. A new derivatization procedure for the gas-chromatographic analysis of vegetable oils. Anal Bioanal Chem 405, 8677–8684 (2013). https://doi.org/10.1007/s00216-013-7190-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-013-7190-9

Keywords

Navigation