Skip to main content
Log in

A two-dimensional HPLC separation for the enantioselective determination of hexabromocyclododecane (HBCD) isomers in biota samples

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A new method for enantioselective analysis of isomers of hexabromocyclododecane (HBCD) is described, using a two-dimensional high-performance liquid chromatography (HPLC) approach to avoid coelution, in particular between (+) α-HBCD, (+) β-HBCD, or (+) γ-HBCD. After isomer separation on a conventional column, the single isomers are transferred to an enantioselective HPLC column using heart cuts. Two enantioseparations are conducted in two separate partial chromatograms: one for α-HBCD and one for β- and γ-HBCD. The result is a completely undisturbed enantioselective separation for α-HBCD at a resolution of 4.11. A peak capacity of 107 was achieved. This peak capacity is utilized by the six peaks of the three isomers with two enantiomers each by 6 %. This method was applied to samples of sand eel oil, glaucous gull, and ringed seal. The calibration was performed by treating each enantiomer as a single analyte using a multilevel internal standard calibration. Enantiomeric fractions of 0.495–0.501 with standard deviations (SDs) of 0.056–0.071 were determined for racemic standards of α-HBCD, while the values for fish oil were 0.548–0.562 with SD of 0.018–0.041, depending on the respective mass spectrometric transition.

Enantioseparation of a HBCD in a 2-D separation

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Remberger R, Sternbeck J, Palm A, Kaj L, Stromberg K, Brorstrom-Lunden E (2004) The environmental occurrence of hexabromocyclododecane in Sweden. Chemosphere 54:9–21

    Article  CAS  Google Scholar 

  2. De Wit C (2002) An overview of brominated flame retardants in the environment. Chemosphere 46:583–624

    Article  Google Scholar 

  3. Birnbaum LS, Staskal DF (2004) Brominated flame retardants: cause for concern? Environ Health Perspect 112:9–17

    Article  CAS  Google Scholar 

  4. De Wit C, Herzke D, Vorkamp K (2010) Brominated flame retardants in the Arctic—trends and new candidates. Sci Total Environ 408:2885–2918

    Article  Google Scholar 

  5. Lindberg P, Sellström U, Häggberg L, de Wit CA (2004) Higher brominated diphenyl ethers and hexabromocyclododecane found in eggs of peregrine falcons (Falco peregrinus) breeding in Sweden. Environ Sci Technol 38:93–96

    Article  CAS  Google Scholar 

  6. Gao S, Wang J, Yu Z, Guo Q, Sheng G, Fu J (2011) Hexabromocyclododecanes in surface soils from E-waste recycling areas and industrial areas in South China: concentrations, diastereoisomer- and enantiomer-specific profiles, and inventory. Environ Sci Technol 45:2093–2099

    Article  CAS  Google Scholar 

  7. Vorkamp K, Thomsen M, Falk K, Leslie H, Møller S, Sørensen PB (2005) Temporal development of brominated flame retardants in peregrine falcon (Falco peregrinus) eggs from South Greenland (1986–2003). Environ Sci Technol 39:8199–8206

    Article  CAS  Google Scholar 

  8. Verslycke TA, Vethaak AD, Arijs K, Janssen CR (2005) Flame retardants, surfactants and organotins in sediment and mysid shrimp of the Scheldt estuary (The Netherlands). Environ Pollut 136:19–31

    Article  CAS  Google Scholar 

  9. Covaci A, Gerecke AC, Law RJ, Voorspoels S, Kohler M, Heeb NV, Leslie H, Allchin CR, de Boer J (2006) Hexabromocyclododecanes (HBCDs) in the environment and humans: a review. Environ Sci Technol 40:3679–3688

    Article  CAS  Google Scholar 

  10. Sellström U, Bignert A, Kierkegaard A, Häggberg L, de Wit CA, Olsson M, Jansson B (2003) Temporal trend studies on tetra- and pentabrominated diphenyl ethers and hexabromocyclododecane in guillemot egg from the Baltic Sea. Environ Sci Technol 37:5496–5501

    Article  Google Scholar 

  11. Tomy GT, Budakowski W, Halldorson T, Whittle DM, Keir MJ, Marvin C, MacInnis G, Alaee M (2004) Biomagnification of α- and γ-hexabromocyclododecane isomers in a Lake Ontario food web. Environ Sci Technol 38:2298–2303

    Article  CAS  Google Scholar 

  12. Vorkamp K, Riget FF, Bossi R, Dietz R (2011) Temporal trends of hexabromocyclododecane, polybrominated diphenyl ethers and polychlorinated biphenyls in ringed seals from East Greenland. Environ Sci Technol 45:1243–1249

    Article  CAS  Google Scholar 

  13. Eljarrat E, de la Cal A, Raldua D, Duran C, Barcelo D (2004) Occurrence and bioavailability of polybrominated diphenyl ethers and hexabromocyclododecane in sediment and fish from the Cinca River, a tributary of the Ebro River (Spain). Environ Sci Technol 38:2603–2608

    Article  CAS  Google Scholar 

  14. Eljarrat E, Guerra P, Martínez E, Farré M, Alvarez JG, López-Teijón M, Barceló D (2009) Hexabromocyclododecane in human breast milk: levels and enantiomeric patterns. Environ Sci Technol 43:1940–1946

    Article  CAS  Google Scholar 

  15. Abdallah MAE, Harrad S (2011) Tetrabromobisphenol-A, hexabromocyclododecane and its degradation products in UK human milk: relationship to external exposure. Environ Int 37:443–448

    Article  CAS  Google Scholar 

  16. Yamada-Okabe T, Sakai H, Kashima Y, Yamada-Okabe H (2005) Modulation at a cellular level of the thyroid hormone receptor-mediated gene expression by 1,2,5,6,9,10-hexabromocyclododecane (HBCD), 4,4'-diiodobiphenyl (DIB), and nitrofen (NIP). Toxicol Lett 155:127–133

    Article  CAS  Google Scholar 

  17. Mariussen E, Fonnum F (2003) The effect of brominated flame retardants on neurotransmitter uptake into rat brain synaptosomes and vesicles. Neurochem Int 43:533–542

    Article  CAS  Google Scholar 

  18. Ibhazehiebo K, Iwasaki T, Shimokawa N, Koibuchi N (2011) 1,2,5,6,9,10-αHexabromocyclododecane (HBCD) impairs thyroid hormone-induced dendrite arborization of purkinje cells and suppresses thyroid hormone receptor-mediated transcription. Cerebellum 10:22–31

    Article  CAS  Google Scholar 

  19. Janak K, Covaci A, Voorspoels S, Becher G (2005) Hexabromocyclododecane in marine species from the Western Scheldt Estuary: diastereoisomer- and enantiomer-specific accumulation. Environ Sci Technol 39:1987–1994

    Article  CAS  Google Scholar 

  20. Budakowski W, Tomy G (2003) Congener-specific analysis of hexabromocyclododecane by high-performance liquid chromatography/electrospray tandem mass spectrometry. Rapid Commun Mass Spectrom 17:1399–1404

    Article  CAS  Google Scholar 

  21. Covaci A, Voorspoels S, de Boer J (2003) Determination of brominated flame retardants, with emphasis on polybrominated diphenyl ethers (PBDEs) in environmental and human samples—a review. Environ Int 29:735–756

    Article  CAS  Google Scholar 

  22. Barontini F, Cozzani V, Cuzzola A, Petarca L (2001) Investigation of hexabromocyclododecane thermal degradation pathways by gas chromatography/mass spectrometry. Rapid Commun Mass Spectrom 15:690–698

    Article  CAS  Google Scholar 

  23. Ortiz X, Guerra P, Díaz-Ferrero J, Eljarrat E, Barceló D (2011) Diastereoisomer- and enantiomer-specific determination of hexabromocyclododecane in fish oil for food and feed. Chemosphere 82:739–744

    Article  CAS  Google Scholar 

  24. Esslinger S, Becker R, Maul R, Nehls I (2011) Hexabromocyclododecane enantiomers: microsomal degradation and patterns of hydroxylated metabolites. Environ Sci Technol 45:3938–3944

    Article  CAS  Google Scholar 

  25. Tomy GT, Pleskach K, Oswald T, Halldorson T, Helm PA, MacInnis G, Marvin CH (2008) Enantioselective bioaccumulation of hexabromocyclododecane and congener-specific accumulation of brominated diphenyl ethers in an eastern Canadian arctic marine food web. Environ Sci Technol 42:3634–3639

    Article  CAS  Google Scholar 

  26. Bester K (2003) Chiral analysis for environmental applications. Anal Bioanal Chem 376:302–304

    CAS  Google Scholar 

  27. Esslinger S, Becker R, Jung C, Schröter-Kermani C, Bremser W, Nehls I (2011) Temporal trend (1988–2008) of hexabromocyclododecane enantiomers in herring gull eggs from the German coastal region. Chemosphere 83:161–167

    Article  CAS  Google Scholar 

  28. Köppen R, Becker R, Esslinger S, Nehls I (2010) Enantiomer-specific analysis of hexabromocyclododecane in fish from Etnefjorden (Norway). Chemosphere 80:1241–1245

    Article  Google Scholar 

  29. Mitrevski B, Wynne P, Marriott PJ (2011) Comprehensive two dimensional gas chromatography applied to illicit drug analysis. Anal Bioanal Chem 401:2361–2371

    Article  CAS  Google Scholar 

  30. Harner T, Wiberg K, Norstrom R (2000) Enantiomer fractions are preferred to enantiomer ratios for describing chiral signatures in environmental analysis. Environ Sci Technol 34:218–220

    Article  CAS  Google Scholar 

  31. De Geus HJ, Wester PG, de Boer J, Brinkman UA (2000) Enantiomer fractions instead of enantiomer ratios. Chemosphere 41:725–727

    Article  Google Scholar 

  32. Guerra P, Eljarrat E, Barceló D (2008) Enantiomeric specific determination of hexabromocyclododecane by liquid chromatography–quadrupole linear ion trap mass spectrometry in sediment samples. J Chromatogr A 1203:81–87

    Article  CAS  Google Scholar 

  33. Marvin CH, MacInnis G, Alaee M, Arsenault G, Tomy GT (2007) Factors influencing enantiomeric fractions of hexabromocyclododecane measured using liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom 21:1925–1930

    Article  CAS  Google Scholar 

  34. Tomy GT, Halldorson T, Danell R, Law R, Arsenault G, Alaee M, MacInnis G, Marvin CH (2005) Refinements to the diastereoisomer-specific method for the analysis of hexabromocyclododecane. Rapid Commun Mass Spectrom 19:2819–2826

    Article  CAS  Google Scholar 

  35. Vorkamp K, Bester K, Rigét FF (2012) Species-specific time trends and enantiomer fractions of hexabromocyclododecane (HBCD) in biota from East Greenland. Environ Sci Technol 46:10549–10555

    Article  CAS  Google Scholar 

  36. Heeb NV, Schweizer WB, Mattrel P, Haag R, Gerecke AC, Kohler M, Schmid P, Zennegg M, Wolfensberger M (2007) Solid-state conformations and absolute configurations of (+) and (−) α-, β-, and γ-hexabromocyclododecanes (HBCDs). Chemosphere 68:940–950

    Google Scholar 

Download references

Acknowledgments

Thanks to Birgit Groth, who performed the sample preparation and integration of large datasets for this project as a lab technician. The glaucous gull sample originates from the Arctic Monitoring and Assessment Programme funded by the Danish Environmental Protection Agency and coordinated by Frank F. Rigét (Institute of Bioscience, Aarhus University, Denmark).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Bester.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bester, K., Vorkamp, K. A two-dimensional HPLC separation for the enantioselective determination of hexabromocyclododecane (HBCD) isomers in biota samples. Anal Bioanal Chem 405, 6519–6527 (2013). https://doi.org/10.1007/s00216-013-7100-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-013-7100-1

Keywords

Navigation