Skip to main content

Advertisement

Log in

Ketamine-derived designer drug methoxetamine: metabolism including isoenzyme kinetics and toxicological detectability using GC-MS and LC-(HR-)MSn

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Methoxetamine (MXE; 2-(3-methoxyphenyl)-2-(N-ethylamino)-cyclohexanone), a ketamine analog, is a new designer drug and synthesized for its longer lasting and favorable pharmacological effects over ketamine. The aims of the presented study were to identify the phases I and II metabolites of MXE in rat and human urine by GC-MS and LC-high-resolution (HR)-MSn and to evaluate their detectability by GC-MS and LC-MSn using authors’ standard urine screening approaches (SUSAs). Furthermore, human cytochrome P450 (CYP) enzymes were identified to be involved in the initial metabolic steps of MXE in vitro, and respective enzyme kinetic studies using the metabolite formation and substrate depletion approach were conducted. Finally, human urine samples from forensic cases, where the ingestion of MXE was suspected, were analyzed. Eight metabolites were identified in rat and different human urines allowing postulation of the following metabolic pathways: N-deethylation, O-demethylation, hydroxylation, and combinations as well as glucuronidation or sulfation. The enzyme kinetic studies showed that the initial metabolic step in humans, the N-deethylation, was catalyzed by CYP2B6 and CYP3A4. Both SUSAs using GC-MS or LC-MSn allowed monitoring an MXE intake in urine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hofer KE, Grager B, Muller DM, Rauber-Luthy C, Kupferschmidt H, Rentsch KM, Ceschi A (2012) Ann Emerg Med 60:97–99

    Article  Google Scholar 

  2. Archer JR, Dargan PI, Hudson S, Wood DM (2013) QJM 106:147–152

    Article  CAS  Google Scholar 

  3. Corazza O, Schifano F, Simonato P, Fergus S, Assi S, Stair J, Corkery J, Trincas G, Deluca P, Davey Z, Blaszko U, Demetrovics Z, Moskalewicz J, Enea A, di Melchiorre G, Mervo B, di Furia L, Farre M, Flesland L, Pasinetti M, Pezzolesi C, Pisarska A, Shapiro H, Siemann H, Skutle A, Enea A, di Melchiorre G, Sferrazza E, Torrens M, van der Kreeft P, Zummo D, Scherbaum N (2012) Hum Psychopharmacol 27:145–149

    Article  CAS  Google Scholar 

  4. Coppola M, Mondola R (2012) Med. Hypotheses 79:504–507

    Article  CAS  Google Scholar 

  5. Hill SL, Harbon SC, Coulson J, Cooper GA, Jackson G, Lupton DJ, Vale JA, and Thomas SH (2013) Emerg Med J (in press)

  6. Rosenbaum CD, Carreiro SP, Babu KM (2012) J Med Toxicol 8:15–32

    Article  CAS  Google Scholar 

  7. The Guardian (2012) The Guardian. http://www.guardian.co.uk/society/2012/mar/28/legal-high-drug-methoxetamine-banned. Accessed 26 Feb 2013

  8. Bundesinstitut für Arzneimittel und Medizinprodukte (2012). http://www.bfarm.de/DE/Bundesopiumstelle/BtM/sachverst/Protokolle/Ergebnisse_39.html. Accessed Feb 2013 2606

  9. Wikstrom M, Thelander G, Dahlgren M, Kronstrand R (2013) J Anal Toxicol 37:43–46

    Article  Google Scholar 

  10. Wood DM, Davies S, Puchnarewicz M, Johnston A, Dargan PI (2012) Eur J Clin Pharmacol 68:853–856

    Article  CAS  Google Scholar 

  11. Misselbrook GP, Hamilton EJ (2012) Acute Med 11:157–160

    CAS  Google Scholar 

  12. Sein AJ, Wiergowski M, Barwina M, Kaletha K (2012) Przegl Lek 69:609–610

    Google Scholar 

  13. Shields JE, Dargan PI, Wood DM, Puchnarewicz M, Davies S, Waring WS (2012) Clin Toxicol (Phila) 50:438–440

    Article  CAS  Google Scholar 

  14. Westwell AD, Hutchings A, and Caldicott DG (2013) Drug Test Anal (in press)

  15. Welter J, Meyer MR, Wolf E, Weinmann W, Kavanagh P, and Maurer HH (2013) Anal Bioanal Chem. doi 10.1007/s00216-013-6741-4

  16. Maurer HH, Pfleger K, Weber AA (2011) Mass spectral and GC data of drugs, poisons, pesticides, pollutants and their metabolites. Wiley, Weinheim

    Google Scholar 

  17. Ewald AH, Ehlers D, Maurer HH (2008) Anal Bioanal Chem 390:1837–1842

    Article  CAS  Google Scholar 

  18. Maurer HH, Pfleger K, Weber AA (2011) Mass spectral library of drugs, poisons, pesticides, pollutants and their metabolites. Wiley, Weinheim

    Google Scholar 

  19. Meyer MR, Peters FT, Maurer HH (2010) Clin Chem 56:575–584

    Article  CAS  Google Scholar 

  20. Wissenbach DK, Meyer MR, Remane D, Weber AA, Maurer HH (2011) Anal Bioanal Chem 400:79–88

    Article  CAS  Google Scholar 

  21. Meyer MR, Vollmar C, Schwaninger AE, Maurer HH (2012) J Mass Spectrom 47:253–262

    Article  CAS  Google Scholar 

  22. Schwaninger AE, Meyer MR, Maurer HH (2011) Drug Metab. Dispos 39:1998–2002

    Article  CAS  Google Scholar 

  23. Obach RS, Reed-Hagen AE (2002) Drug Metab Dispos 30:831–837

    Article  CAS  Google Scholar 

  24. Crespi CL, Miller VP (1999) Pharmacol Ther 84:121–131

    Article  CAS  Google Scholar 

  25. Venkatakrishnan K, von Moltke LL, Court MH, Harmatz JS, Crespi CL, Greenblatt DJ (2000) Drug Metab. Dispos 28:1493–1504

    CAS  Google Scholar 

  26. Grime K, Riley RJ (2006) Curr. Drug Metab 7:251–264

    Article  CAS  Google Scholar 

  27. Hays PA, Casale JF, Berrier AL (2012) Microgram J 9:3–17

    CAS  Google Scholar 

  28. McLafferty FW, Turecek F (1993) Interpretation of mass spectra. University Science Books, Mill Valley, CA

    Google Scholar 

  29. Smith RM, Busch KL (1999) Understanding mass spectra—a basic approach. Wiley, New York (NY)

    Google Scholar 

  30. de Zeeuw RA, Franke JP, Maurer HH, Pfleger K (1992) Gas chromatographic retention indices of toxicologically relevant substances and their metabolites (Report of the DFG commission for clinical toxicological analysis, special issue of the TIAFT bulletin). VCH Publishers, Weinheim

    Google Scholar 

  31. McLafferty FW (2011) Wiley registry of mass spectral data 9th edition with NIST 2011 spectral data. Wiley, New York

    Google Scholar 

  32. Sharma V, McNeill JH (2009) Br J Pharmacol 157:907–921

    Article  CAS  Google Scholar 

  33. Maurer HH, Pfleger K, Weber AA (2013) Mass spectral and GC data of drugs, poisons, pesticides, pollutants and their metabolites. Wiley, Weinheim

    Google Scholar 

  34. Maurer HH, Pfleger K, Weber AA (2014) Mass spectral library of drugs, poisons, pesticides, pollutants and their metabolites. Wiley, Weinheim

    Google Scholar 

  35. Wissenbach DK, Meyer MR, Remane D, Philipp AA, Weber AA, Maurer HH (2011) Anal Bioanal Chem 400:3481–3489

    Article  CAS  Google Scholar 

  36. Desta Z, Moaddel R, Ogburn ET, Xu C, Ramamoorthy A, Venkata SL, Sanghvi M, Goldberg ME, Torjman MC, Wainer IW (2012) Xenobiotica 42:1076–1087

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors like to thank Gabriele Ulrich, Carsten Schröder, and Armin A. Weber for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus R. Meyer.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 833 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meyer, M.R., Bach, M., Welter, J. et al. Ketamine-derived designer drug methoxetamine: metabolism including isoenzyme kinetics and toxicological detectability using GC-MS and LC-(HR-)MSn . Anal Bioanal Chem 405, 6307–6321 (2013). https://doi.org/10.1007/s00216-013-7051-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-013-7051-6

Keywords

Navigation