Skip to main content
Log in

Fluorescent sensing ochratoxin A with single fluorophore-labeled aptamer

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

We explored a fluorescent strategy for sensing ochratoxin A (OTA) by using a single fluorophore-labeled aptamer for detection of OTA. This method relied on the change of the fluorescence intensity of the labeled dye induced by the specific binding of the fluorescent aptamer to OTA. Different fluorescein labeling sites of aptamers were screened, including the internal thymine bases, 3′-end, and 5′-end of the aptamer, and the effect of the labeling on the aptamer affinity was investigated. Some fluorophore-labeled aptamers showed a signal-on or signal-off response. With the fluorescent aptamer switch, simple, rapid, and selective sensing of OTA at nanomolar concentrations was achieved. OTA spiked in diluted red wine could be detected, showing the feasibility of the fluorescent aptamer for a complex matrix. This method shows potential for designing aptamer sensors for other targets.

A simple fluorescent approach for OTA sensing is achieved by using single fluorophore-labeled aptamer. A fluorophore is attached on one site of the aptamer. The affinity binding of OTA induces the alteration of fluorescence properties of the labeled fluorophore as the consequence of the conformation change of the aptamer. OTA can be detected by measuring the change of fluorescence signals of the labeled dye

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Klussmann S (ed) (2006) The aptamer handbook, functional oligonucleotides and their applications. Wiley, Weinheim

    Google Scholar 

  2. Li Y, Lu Y (2009) Functional nucleic acids for analytical applications. Springer, New York

    Google Scholar 

  3. Liu J, Cao Z, Lu Y (2009) Chem Rev 109:1948–1998

    Article  CAS  Google Scholar 

  4. Cho EJ, Lee JW, Ellington AD (2009) Annu Rev Anal Chem 2:241–264

    Article  CAS  Google Scholar 

  5. Jhaveri SD, Kirby R, Conrad R, Maglott EJ, Bowser M, Kennedy RT, Glick G, Ellington AD (2000) J Am Chem Soc 122:2469–2473

    Article  CAS  Google Scholar 

  6. Nutiu R, Li Y (2004) Chem Eur J 10:1868–1876

    Article  CAS  Google Scholar 

  7. Juskowiak B (2011) Anal Bioanal Chem 399:3157–3176

    Article  CAS  Google Scholar 

  8. Lubin AA, Plaxco KW (2010) Acc Chem Res 43:496–505

    Article  CAS  Google Scholar 

  9. Gokulrangan G, Unruh JR, Holub DF (2005) Anal Chem 77:1963–1970

    Article  CAS  Google Scholar 

  10. Heyduk E, Heyduk T (2005) Anal Chem 77:1147–1156

    Article  CAS  Google Scholar 

  11. Zhu Z, Yang R, You M, Zhang X, Wu Y, Tan W (2010) Anal Bioanal Chem 396:73–83

    Article  CAS  Google Scholar 

  12. Ruta J, Perrier S, Ravelet C, Fize J, Peyrin E (2009) Anal Chem 81:7468–7473

    Article  CAS  Google Scholar 

  13. Chang H, Tang L, Wang Y, Jiang J, Li J (2010) Anal Chem 82:2341–2346

    Article  CAS  Google Scholar 

  14. Wang W, Chen C, Qian M, Zhao XS (2008) Anal Biochem 373:213–219

    Article  CAS  Google Scholar 

  15. Zhang D, Lu M, Wang H (2011) J Am Chem Soc 133:9188–9191

    Article  CAS  Google Scholar 

  16. Katilius E, Katiliene Z, Woodbury NW (2006) Anal Chem 78:6484–6489

    Article  CAS  Google Scholar 

  17. Patel M, Dutta A, Huang H (2011) Anal Bioanal Chem 400:3035–3040

    Article  CAS  Google Scholar 

  18. Zhu Z, Ravelet C, Perrier S, Guieu V, Fiore E, Peyrin E (2012) Anal Chem 84:7203–7211

    Article  CAS  Google Scholar 

  19. Monaci L, Palmisano F (2004) Anal Bioanal Chem 378:96–103

    Article  CAS  Google Scholar 

  20. Hayat A, Paniel N, Rhouati A, Marty JL, Barthelmebs L (2012) Food Control 26:401–415

    Article  CAS  Google Scholar 

  21. Cruz-Aguado JA, Penner G (2008) J Agric Food Chem 56:10456–10461

    Article  CAS  Google Scholar 

  22. Cruz-Aguado JA, Penner G (2008) Anal Chem 80:8853–8855

    Article  CAS  Google Scholar 

  23. Geng X, Zhang D, Wang H, Zhao Q (2013) Anal Bioanal Chem 405:2443–2449

    Article  CAS  Google Scholar 

  24. Kuang H, Chen W, Xu D, Xu L, Zhu Y, Liu L, Chu H, Peng C, Xu C, Zhu S (2010) Biosens Bioelectron 76:710–716

    Article  Google Scholar 

  25. Wang L, Ma W, Chen W, Liu L, Ma W, Zhu Y, Xu L, Kuang H, Xu C (2011) Biosens Bioelectron 26:3059–3062

    Article  CAS  Google Scholar 

  26. Bone L, Vidal JC, Duato P, Castillo JR (2011) Biosens Bioelectron 26:3254–3259

    Article  Google Scholar 

  27. Barthelmebs L, Jonca J, Hayat A, Prieto-Simon B, Marty J-L (2011) Food Control 22:737–743

    Article  CAS  Google Scholar 

  28. Wang L, Chen W, Ma W, Liu L, Ma W, Zhao Y, Zhu Y, Xu L, Kuang H, Xu C (2011) Chem Commun 47:1574–1576

    Article  CAS  Google Scholar 

  29. Sheng L, Ren J, Miao Y, Wang J, Wang E (2011) Biosens Bioelectron 26:3494–3499

    Article  CAS  Google Scholar 

  30. Girolamo AD, McKeague M, Miller JD, DeRosa MC, Visconti A (2011) Food Chem 127:1378–1384

    Article  Google Scholar 

  31. Rhouati A, Paniel N, Meraihi Z, Marty JL (2011) Food Control 22:1790–1796

    Article  CAS  Google Scholar 

  32. Chapuis-Hugon F, du Boisbaudry A, Madru B, Pichon V (2011) Anal Bioanal Chem 400:1199–1207

    Article  CAS  Google Scholar 

  33. Yang C, Wang Y, Marty JL, Yang XR (2011) Biosen Bioelectron 26:2724–2727

    Article  CAS  Google Scholar 

  34. Tong P, Zhao WW, Zhang L, Xu JJ, Chen HY (2012) Biosens Bioelectron 33:146–151

    Article  CAS  Google Scholar 

  35. Wu S, Duan N, Ma X, Xia Y, Wang H, Wang Z, Zhang Q (2012) Anal Chem 84:6263–6270

    Article  CAS  Google Scholar 

  36. De Girolamo A, Le L, Penner G, Schena R, Visconti A (2012) Anal Bioanal Chem 403:2627–2634

    Article  Google Scholar 

  37. Yang XH, Kong WJ, Yang MH, Zhao M, Ouyang Z (2013) Chin J Anal Chem 41:297–306

    Article  Google Scholar 

  38. Guo ZJ, Ren JT, Wang JH, Wang EK (2011) Talanta 85:2517–2521

    Article  CAS  Google Scholar 

  39. Tessini C, Mardones C, von Baer D, Vega M, Herlitz E, Saelzer R, Silva J, Torres O (2010) Anal Chim Acta 660:119–126

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (grant No. 21222503), the State Key Laboratory of Environmental Chemistry and Ecotoxicology in the Research Center for Eco-Environmental Sciences of the Chinese Academy of Sciences (grant No. KF2010-24), and the Key Project of Chinese Ministry of Education (grant No. 212020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Zhao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 262 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, Q., Geng, X. & Wang, H. Fluorescent sensing ochratoxin A with single fluorophore-labeled aptamer. Anal Bioanal Chem 405, 6281–6286 (2013). https://doi.org/10.1007/s00216-013-7047-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-013-7047-2

Keywords

Navigation