Skip to main content

Advertisement

Log in

Plasmonic nanoprobes for intracellular sensing and imaging

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Recent advances in integrating nanotechnology and optical microscopy offer great potential in intracellular applications with improved molecular information and higher resolution. Continuous efforts in designing nanoparticles with strong and tunable plasmon resonance have led to new developments in biosensing and bioimaging, using surface-enhanced Raman scattering and two-photon photoluminescence. We provide an overview of the nanoprobe design updates, such as controlling the nanoparticle shape for optimal plasmon peak position; optical sensing and imaging strategies for intracellular nanoparticle detection; and addressing practical challenges in cellular applications of nanoprobes, including the use of targeting agents and control of nanoparticle aggregation.

Plasmonic nanoprobe characterization (TEM, simulation) and applications in pH sensing, SERS mapping, and TPL imaging

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Periasamy A (2001) Methods in cellular imaging. Oxford University Press, New York

    Book  Google Scholar 

  2. Stender AS, Marchuk K, Liu C, Sander S, Meyer MW, Smith EA, Neupane B, Wang G, Li J, Cheng J-X, Huang B, Fang N (2013) Single cell optical imaging and spectroscopy. Chem Rev. doi:10.1021/cr300336e

    Google Scholar 

  3. Zipfel WR, Williams RM, Webb WW (2003) Nonlinear magic: multiphoton microscopy in the biosciences. Nat Biotechnol 21(11):1369–1377. doi:10.1038/nbt899

    Article  CAS  Google Scholar 

  4. Rust MJ, Bates M, Zhuang X (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3(10):793–796. doi:10.1038/nmeth929

    Article  CAS  Google Scholar 

  5. Fernández-Suárez M, Ting AY (2008) Fluorescent probes for super-resolution imaging in living cells. Nat Rev Mol Cell Biol 9(12):929–943. doi:10.1038/nrm2531

    Article  CAS  Google Scholar 

  6. Kievit FM, Zhang M (2011) Cancer nanotheranostics: improving imaging and therapy by targeted delivery across biological barriers. Adv Mater 23(36):H217–H247. doi:10.1002/adma.201102313

    Article  CAS  Google Scholar 

  7. Resch-Genger U, Grabolle M, Cavaliere-Jaricot S, Nitschke R, Nann T (2008) Quantum dots versus organic dyes as fluorescent labels. Nat Methods 5(9):763–775. doi:10.1038/nmeth.1248

    Article  CAS  Google Scholar 

  8. Smith AM, Duan H, Mohs AM, Nie S (2008) Bioconjugated quantum dots for in vivo molecular and cellular imaging☆. Adv Drug Deliv Rev 60(11):1226–1240. doi:10.1016/j.addr.2008.03.015

    Article  CAS  Google Scholar 

  9. Derfus AM, Chan WCW, Bhatia SN (2004) Probing the cytotoxicity of semiconductor quantum dots. Nano Lett 4(1):11–18. doi:10.1021/nl0347334

    Article  CAS  Google Scholar 

  10. Liu Y, Tu D, Zhu H, Ma E, Chen X (2013) Lanthanide-doped luminescent nano-bioprobes: from fundamentals to biodetection. Nanoscale 5(4):1369–1384. doi:10.1039/c2nr33239f

    Article  CAS  Google Scholar 

  11. Liu Z, Yang K, Lee ST (2011) Single-walled carbon nanotubes in biomedical imaging. J Mater Chem 21(3):586–598. doi:10.1039/C0JM02020F

    Article  CAS  Google Scholar 

  12. Li B, Cheng Y, Liu J, Yi C, Brown AS, Yuan H, Vo-Dinh T, Fischer MC, Warren WS (2012) Direct optical imaging of graphene in vitro by nonlinear femtosecond laser spectral reshaping. Nano Lett 12(11):5936–5940. doi:10.1021/nl303358p

    Article  CAS  Google Scholar 

  13. Rosen JE, Yoffe S, Meerasa A (2011) Nanotechnology and diagnostic imaging: new advances in contrast agent technology. J Nanomed Nanotechnol 2(5):2–12. doi:10.4172/2157-7439.1000115

    Google Scholar 

  14. Akhter S, Ahmad MZ, Ahmad FJ, Storm G, Kok RJ (2012) Gold nanoparticles in theranostic oncology: current state-of-the-art. Expert Opin Drug Deliv 9(10):1225–1243. doi:10.1517/17425247.2012.716824

    Article  CAS  Google Scholar 

  15. Dreaden EC, Alkilany AM, Huang X, Murphy CJ, El-Sayed MA (2012) The golden age: gold nanoparticles for biomedicine. Chem Soc Rev 41(7):2740–2779. doi:10.1039/c1cs15237h

    Article  CAS  Google Scholar 

  16. Saha K, Agasti SS, Kim C, Li X, Rotello VM (2012) Gold nanoparticles in chemical and biological sensing. Chem Rev 112(5):2739–2779. doi:10.1021/cr2001178

    Article  CAS  Google Scholar 

  17. Thakor AS, Jokerst J, Zavaleta C, Massoud TF, Gambhir SS (2011) Gold nanoparticles: a revival in precious metal administration to patients. Nano Lett 11(10):4029–4036. doi:10.1021/nl202559p

    Article  CAS  Google Scholar 

  18. Cho EC, Glaus C, Chen J, Welch MJ, Xia Y (2010) Inorganic nanoparticle-based contrast agents for molecular imaging. Trends Mol Med 16(12):561–573. doi:10.1016/j.molmed.2010.09.004

    Article  CAS  Google Scholar 

  19. Vo-Dinh T, Hiromoto M, Begun G, Moody R (1984) Surface-enhanced Raman spectrometry for trace organic analysis. Anal Chem 56(9):1667–1670. doi:10.1021/ac00273a029

    Article  CAS  Google Scholar 

  20. Meier M, Wokaun A, Vo-Dinh T (1985) Silver particles on stochastic quartz substrates providing tenfold increase in Raman enhancement. J Phys Chem 89(10):1843–1846. doi:10.1021/j100256a002

    Article  CAS  Google Scholar 

  21. Vo-Dinh T, Meier M, Wokaun A (1986) Surface-enhanced Raman-spectrometry with silver particles on stochastic-post substrates. Anal Chim Acta 181:139–148. doi:10.1016/S0003-2670(00)85228-9

    Article  CAS  Google Scholar 

  22. Vo-Dinh T (1998) Surface-enhanced Raman spectroscopy using metallic nanostructures. Trends Anal Chem 17(8–9):557–582. doi:10.1016/s0165-9936(98)00069-7

    Article  CAS  Google Scholar 

  23. Vo-Dinh T, Dhawan A, Norton SJ, Khoury CG, Wang H-N, Misra V, Gerhold MD (2010) Plasmonic nanoparticles and nanowires: design, fabrication and application in sensing. J Phys Chem C 114(16):7480–7488. doi:10.1021/jp911355q

    Article  CAS  Google Scholar 

  24. Wang H-N, Vo-Dinh T (2009) Multiplex detection of breast cancer biomarkers using plasmonic molecular sentinel nanoprobes. Nanotechnology 20(6):065101. doi:10.1088/0957-4484/20/6/065101

    Article  CAS  Google Scholar 

  25. Wang H-N, Vo-Dinh T (2011) Plasmonic coupling interference (PCI) nanoprobes for nucleic acid detection. Small 7(21):3067–3074. doi:10.1002/smll.201101380

    Article  CAS  Google Scholar 

  26. Gregas MK, Yan F, Scaffidi J, Wang H-N, Vo-Dinh T (2011) Characterization of nanoprobe uptake in single cells: spatial and temporal tracking via SERS labeling and modulation of surface charge. Nanomedicine 7(1):115–122. doi:10.1016/j.nano.2010.07.009

    Article  CAS  Google Scholar 

  27. Wabuyele M, Yan F, Griffin G, Vo-Dinh T (2005) Hyperspectral surface-enhanced Raman imaging of labeled silver nanoparticles in single cells. Rev Sci Instrum 76(6):063710. doi:10.1063/1.1938667

    Article  CAS  Google Scholar 

  28. Fales AM, Yuan H, Vo-Dinh T (2011) Silica-coated gold nanostars for combined surface-enhanced Raman scattering (SERS) detection and singlet-oxygen generation: a potential nanoplatform for theranostics. Langmuir 27(19):12186–12190. doi:10.1021/la202602q

    Article  CAS  Google Scholar 

  29. Yuan H, Khoury CG, Wilson CM, Grant GA, Vo-Dinh T (2012) Gold nanostars: surfactant-free synthesis, 3D modelling, and two-photon photoluminescence imaging. Nanotechnology 23(7):075102. doi:10.1088/0957-4484/23/7/075102

    Article  CAS  Google Scholar 

  30. Yuan H, Fales AM, Khoury CG, Liu J, Vo-Dinh T (2013) Spectral characterization and intracellular detection of surface-enhanced Raman scattering (SERS)-encoded plasmonic gold nanostars. J Raman Spectrosc 44(2):234–239. doi:10.1002/jrs.4172

    Article  CAS  Google Scholar 

  31. Yuan H, Liu Y, Fales AM, Li Y, Liu J, Vo-Dinh T (2013) Quantitative surface-enhanced resonant Raman scattering multiplexing of biocompatible gold nanostars for in vitro and ex vivo detection. Anal Chem 85(1):208–212. doi:10.1021/ac302510g

    Article  CAS  Google Scholar 

  32. Yuan H, Fales AM, Vo-Dinh T (2012) TAT peptide-functionalized gold nanostars: enhanced intracellular delivery and efficient NIR photothermal therapy using ultralow irradiance. J Am Chem Soc 134(28):11358–11361. doi:10.1021/ja304180y

    Article  CAS  Google Scholar 

  33. Yuan H, Khoury CG, Wilson CM, Grant GA, Bennett AJ, Vo-Dinh T (2012) In vivo particle tracking and photothermal ablation using plasmon-resonant gold nanostars. Nanomedicine 8(8):1355–1363. doi:10.1016/j.nano.2012.02.005

    Article  CAS  Google Scholar 

  34. Riehemann K, Schneider SW, Luger TA, Godin B, Ferrari M, Fuchs H (2009) Nanomedicine—challenge and perspectives. Angew Chem Int Ed 48(5):872–897. doi:10.1002/anie.200802585

    Article  CAS  Google Scholar 

  35. Wang X, Yang L, Chen ZG, Shin DM (2008) Application of nanotechnology in cancer therapy and imaging. CA Cancer J Clin 58(2):97–110. doi:10.3322/CA.2007.0003

    Article  Google Scholar 

  36. Nie S, Xing Y, Kim GJ, Simons JW (2007) Nanotechnology applications in cancer. Annu Rev Biomed Eng 9:257–288. doi:10.1146/annurev.bioeng.9.060906.152025

    Article  CAS  Google Scholar 

  37. Kim BYS, Rutka JT, Chan WCW (2010) Nanomedicine. N Eng J Med 363(25):2434–2443. doi:10.1056/NEJMra0912273

    Article  CAS  Google Scholar 

  38. Rodriguez-Lorenzo L, Alvarez-Puebla RA, Pastoriza-Santos I, Mazzucco S, Stephan O, Kociak M, Liz-Marzán LM, Garcia de Abajo FJ (2009) Zeptomol detection through controlled ultrasensitive surface-enhanced Raman scattering. J Am Chem Soc 131(13):4616–4618. doi:10.1021/ja809418t

    Article  CAS  Google Scholar 

  39. Bantz KC, Meyer AF, Wittenberg NJ, Im H, Kurtuluş Ö, Lee SH, Lindquist NC, Oh S-H, Haynes CL (2011) Recent progress in SERS biosensing. Phys Chem Chem Phys 13(24):11551–11567. doi:10.1039/c0cp01841d

    Article  CAS  Google Scholar 

  40. Hahn MA, Singh AK, Sharma P, Brown SC, Moudgil BM (2011) Nanoparticles as contrast agents for in-vivo bioimaging: current status and future perspectives. Anal Bioanal Chem 399(1):3–27. doi:10.1007/s00216-010-4207-5

    Article  CAS  Google Scholar 

  41. Xia Y, Li W, Cobley CM, Chen J, Xia X, Zhang Q, Yang M, Cho EC, Brown PK (2011) Gold nanocages: from synthesis to theranostic applications. Acc Chem Res 44(10):914–924. doi:10.1021/ar200061q

    Article  CAS  Google Scholar 

  42. Huang L, Liu Y (2011) In vivo delivery of RNAi with lipid-based nanoparticles. Annu Rev Biomed Eng 13(1):507–530. doi:10.1146/annurev-bioeng-071910-124709

    Article  CAS  Google Scholar 

  43. Boisselier E, Astruc D (2009) Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem Soc Rev 38(6):1759–1782. doi:10.1039/b806051g

    Article  CAS  Google Scholar 

  44. Kennedy LC, Bickford LR, Lewinski NA, Coughlin AJ, Hu Y, Day ES, West JL, Drezek RA (2011) A new era for cancer treatment: gold-nanoparticle-mediated thermal therapies. Small 7(2):169–183. doi:10.1002/smll.201000134

    Article  CAS  Google Scholar 

  45. Abalde-Cela S, Aldeanueva-Potel P, Mateo-Mateo C, Rodríguez-Lorenzo L, Alvarez-Puebla RA, Liz-Marzán LM (2010) Surface-enhanced Raman scattering biomedical applications of plasmonic colloidal particles. J R Soc Interface 7(Suppl 4):S435–S450. doi:10.1098/rsif.2010.0125.focus

    Article  CAS  Google Scholar 

  46. Lal S, Link S, Halas NJ (2007) Nano-optics from sensing to waveguiding. Nat Photonics 1(11):641–648. doi:10.1038/nphoton.2007.223

    Article  CAS  Google Scholar 

  47. Stiles PL, Dieringer JA, Shah NC, Van Duyne RP (2008) Surface-enhanced Raman spectroscopy. Annu Rev Anal Chem 1:601–626. doi:10.1146/annurev.anchem.1.031207.112814

    Article  CAS  Google Scholar 

  48. Zhang J (2010) Biomedical applications of shape-controlled plasmonic nanostructures: a case study of hollow gold nanospheres for photothermal ablation therapy of cancer. J Phys Chem Lett 1(4):686–695. doi:10.1021/jz900366c

    Article  CAS  Google Scholar 

  49. Wang G, Stender AS, Sun W, Fang N (2010) Optical imaging of non-fluorescent nanoparticle probes in live cells. Analyst 135(2):215–221. doi:10.1039/b916395f

    Article  CAS  Google Scholar 

  50. Melancon MP, Zhou M, Li C (2011) Cancer theranostics with near-infrared light-activatable multimodal nanoparticles. Acc Chem Res 44(10):947–956. doi:10.1021/ar200022e

    Article  CAS  Google Scholar 

  51. Chen J, Glaus C, Laforest R, Zhang Q, Yang M, Gidding M, Welch MJ, Xia Y (2010) Gold nanocages as photothermal transducers for cancer treatment. Small 6(7):811–817. doi:10.1002/smll.200902216

    Article  CAS  Google Scholar 

  52. Huschka R, Barhoumi A, Liu Q, Roth JA, Ji L, Halas NJ (2012) Gene silencing by gold nanoshell-mediated delivery and laser-triggered release of antisense oligonucleotide and siRNA. ACS Nano 6(9):7681–7691. doi:10.1021/nn301135w

    Article  CAS  Google Scholar 

  53. Sau TK, Rogach AL, Jäckel F, Klar TA, Feldmann J (2010) Properties and applications of colloidal nonspherical noble metal nanoparticles. Adv Mater 22(16):1805–1825. doi:10.1002/adma.200902557

    Article  CAS  Google Scholar 

  54. Rodriguez-Lorenzo L, Alvarez-Puebla RA, Javier Garcia de Abajo F, Liz-Marzán LM (2010) Surface enhanced Raman scattering using star-shaped gold colloidal nanoparticles. J Phys Chem C 114(16):7336–7340. doi:10.1021/jp909253w

    Article  CAS  Google Scholar 

  55. Li B, Claytor KE, Yuan H, Vo-Dinh T, Warren WS, Fischer MC (2012) Multicontrast nonlinear optical microscopy with a compact and rapid pulse shaper. Opt Lett 37(13):2763–2765. doi:10.1364/OL.37.002763

    Article  CAS  Google Scholar 

  56. Kim C, Song H-M, Cai X, Yao J, Wei A, Wang LV (2011) In vivo photoacoustic mapping of lymphatic systems with plasmon-resonant nanostars. J Mater Chem 21(9):2841–2844. doi:10.1039/c0jm04194g

    Article  CAS  Google Scholar 

  57. Schütz M, Steinigeweg D, Salehi M, Kömpe K, Schlücker S (2011) Hydrophilically stabilized gold nanostars as SERS labels for tissue imaging of the tumor suppressor p63 by immuno-SERS microscopy. Chem Commun 47(14):4216–4218. doi:10.1039/c0cc05229a

    Article  CAS  Google Scholar 

  58. Xie J, Lee JY, Wang DIC (2007) Seedless, surfactantless, high-yield synthesis of branched gold nanocrystals in HEPES buffer solution. Chem Mater 19(11):2823–2830. doi:10.1021/cm0700100

    Article  CAS  Google Scholar 

  59. Willets KA (2009) Surface-enhanced Raman scattering (SERS) for probing internal cellular structure and dynamics. Anal Bioanal Chem 394(1):85–94. doi:10.1007/s00216-009-2682-3

    Article  CAS  Google Scholar 

  60. Drescher D, Kneipp J (2012) Nanomaterials in complex biological systems: insights from Raman spectroscopy. Chem Soc Rev 41(17):5780–5799. doi:10.1039/c2cs35127g

    Article  CAS  Google Scholar 

  61. Vitol EA, Orynbayeva Z, Friedman G, Gogotsi Y (2012) Nanoprobes for intracellular and single cell surface-enhanced Raman spectroscopy (SERS). J Raman Spectrosc 43(7):817–827. doi:10.1002/jrs.3100

    Article  CAS  Google Scholar 

  62. Cialla D, März A, Böhme R, Theil F, Weber K, Schmitt M, Popp J (2012) Surface-enhanced Raman spectroscopy (SERS): progress and trends. Anal Bioanal Chem 403(1):27–54. doi:10.1007/s00216-011-5631-x

    Article  CAS  Google Scholar 

  63. Xie H-n, Larmour IA, Smith WE, Faulds K, Graham D (2012) Surface-enhanced Raman scattering investigation of hollow gold nanospheres. J Phys Chem C 116(14):8338–8342. doi:10.1021/jp3014089

    Article  CAS  Google Scholar 

  64. Harper MM, McKeating KS, Faulds K (2013) Recent developments and future directions in SERS for bioanalysis. Phys Chem Chem Phys 15(15):5312–5328. doi:10.1039/c2cp43859c

    Article  CAS  Google Scholar 

  65. Baker G, Moore D (2005) Progress in plasmonic engineering of surface-enhanced Raman-scattering substrates toward ultra-trace analysis. Anal Bioanal Chem 382(8):1751–1770. doi:10.1007/s00216-005-3353-7

    Article  CAS  Google Scholar 

  66. Banholzer MJ, Millstone JE, Qin L, Mirkin CA (2008) Rationally designed nanostructures for surface-enhanced Raman spectroscopy. Chem Soc Rev 37(5):885–897. doi:10.1039/b710915f

    Article  CAS  Google Scholar 

  67. Wolkow RA, Moskovits M (1987) Enhanced photochemistry on silver surfaces. J Chem Phys 87(10):5858–5869. doi:10.1063/1.453508

    Article  CAS  Google Scholar 

  68. Campion A, Kambhampati P (1998) Surface-enhanced Raman scattering. Chem Soc Rev 27(4):241–250

    Article  CAS  Google Scholar 

  69. Kneipp K, Kneipp H, Itzkan I, Dasari RR, Feld MS (2002) Surface-enhanced Raman scattering and biophysics. J Phys Condens Matter 14(18):R597–R624. doi:10.1088/0953-8984/14/18/202

    Article  CAS  Google Scholar 

  70. Kneipp K, Wang Y, Kneipp H, Perelman L, Itzkan I, Dasari R, Feld M (1997) Single molecule detection using surface-enhanced Raman scattering (SERS). Phys Rev Lett 78(9):1667–1670. doi:10.1103/PhysRevLett.78.1667

    Article  CAS  Google Scholar 

  71. Qian XM, Nie S (2008) Single-molecule and single-nanoparticle SERS: from fundamental mechanisms to biomedical applications. Chem Soc Rev 37(5):912–920. doi:10.1039/b708839f

    Article  CAS  Google Scholar 

  72. Nie S, Emery S (1997) Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275(5303):1102–1106. doi:10.1126/science.275.5303.1102

    Article  CAS  Google Scholar 

  73. Xu H, Aizpurua J, Kall M, Apell P (2000) Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering. Phys Rev E 62(3):4318–4324. doi:10.1103/PhysRevE.62.4318

    Article  CAS  Google Scholar 

  74. Metiu H, Das P (1984) The electromagnetic theory of surface enhanced spectroscopy. Annu Rev Phys Chem 35:507–536. doi:10.1146/annurev.pc.35.100184.002451

    Article  CAS  Google Scholar 

  75. Orendorff C, Gearheart L, Jana N, Murphy C (2006) Aspect ratio dependence on surface enhanced Raman scattering using silver and gold nanorod substrates. Phys Chem Chem Phys 8(1):165–170. doi:10.1039/b512573a

    Article  CAS  Google Scholar 

  76. Wustholz KL, Henry A-I, McMahon JM, Freeman RG, Valley N, Piotti ME, Natan MJ, Schatz GC, van Duyne RP (2010) Structure-activity relationships in gold nanoparticle dimers and trimers for surface-enhanced Raman spectroscopy. J Am Chem Soc 132(31):10903–10910. doi:10.1021/ja104174m

    Article  CAS  Google Scholar 

  77. Li M, Cushing SK, Zhang J, Lankford J, Aguilar ZP, Ma D, Wu N (2012) Shape-dependent surface-enhanced Raman scattering in gold–Raman-probe–silica sandwiched nanoparticles for biocompatible applications. Nanotechnology 23:115501. doi:10.1088/0957-4484/23/11/115501

    Article  CAS  Google Scholar 

  78. Cunningham D, Littleford RE, Smith WE, Lundahl PJ, Khan I, McComb DW, Graham D, Laforest N (2006) Practical control of SERRS enhancement. Faraday Discuss 132:135–145. doi:10.1039/b506241a

    Article  CAS  Google Scholar 

  79. McNay G, Eustace D, Smith WE, Faulds K, Graham D (2011) Surface-enhanced Raman scattering (SERS) and surface-enhanced resonance Raman scattering (SERRS): a review of applications. Appl Spectrosc 65(8):825–837. doi:10.1366/11-06365

    Article  CAS  Google Scholar 

  80. Meyer SA, Ru ECL, Etchegoin PG (2010) Quantifying resonant Raman cross sections with SERS. J Phys Chem A 114(17):5515–5519. doi:10.1021/jp100669q

    Article  CAS  Google Scholar 

  81. Gabudean AM, Focsan M, Astilean S (2012) Gold nanorods performing as dual-modal nanoprobes via metal-enhanced fluorescence (MEF) and surface-enhanced Raman scattering (SERS). J Phys Chem C 116(22):12240–12249. doi:10.1021/jp211954m

    Article  CAS  Google Scholar 

  82. Moskovits M (2013) Persistent misconceptions regarding SERS. Phys Chem Chem Phys 15(15):5301–5311. doi:10.1039/c2cp44030j

    Article  CAS  Google Scholar 

  83. Hofmann A, Schmiel P, Stein B, Graf C (2011) Controlled formation of gold nanoparticle dimers using multivalent thiol ligands. Langmuir 27(24):15165–15175. doi:10.1021/la2028498

    Article  CAS  Google Scholar 

  84. Cheng L, Song J, Yin J, Duan H (2011) Self-assembled plasmonic dimers of amphiphilic gold nanocrystals. J Phys Chem Lett 2(17):2258–2262. doi:10.1021/jz201011b

    Article  CAS  Google Scholar 

  85. Braun GB, Lee SJ, Laurence T, Fera N, Fabris L, Bazan GC, Moskovits M, Reich NO (2009) Generalized approach to SERS-active nanomaterials via controlled nanoparticle linking, polymer encapsulation, and small-molecule infusion. J Phys Chem C 113(31):13622–13629. doi:10.1021/jp903399p

    Article  CAS  Google Scholar 

  86. Tyler TP, Henry A-I, Van Duyne RP, Hersam MC (2011) Improved monodispersity of plasmonic nanoantennas via centrifugal processing. J Phys Chem Lett 2(3):218–222. doi:10.1021/jz101690f

    Article  CAS  Google Scholar 

  87. Su X, Zhang J, Sun L, Koo T-W, Chan S, Sundararajan N, Yamakawa M, Berlin AA (2005) Composite organic–inorganic nanoparticles (COINs) with chemically encoded optical signatures. Nano Lett 5(1):49–54. doi:10.1021/nl0484088

    Article  CAS  Google Scholar 

  88. Jun B-H, Noh MS, Kim J, Kim G, Kang H, Kim M-S, Seo Y-T, Baek J, Kim J-H, Park J, Kim S, Kim Y-K, Hyeon T, Cho M-H, Jeong DH, Lee Y-S (2010) Multifunctional silver-embedded magnetic nanoparticles as SERS nanoprobes and their applications. Small 6(1):119–125. doi:10.1002/smll.200901459

    Article  CAS  Google Scholar 

  89. Romo-Herrera JM, Alvarez-Puebla RA, Liz-Marzán LM (2011) Controlled assembly of plasmonic colloidal nanoparticle clusters. Nanoscale 3(4):1304–1315. doi:10.1039/c0nr00804d

    Article  CAS  Google Scholar 

  90. Khoury CG, Norton SJ, Vo-Dinh T (2009) Plasmonics of 3-D nanoshell dimers using multipole expansion and finite element method. ACS Nano 3(9):2776–2788. doi:10.1021/nn900664j

    Article  CAS  Google Scholar 

  91. Norton SJ, Vo-Dinh T (2008) Optical response of linear chains of metal nanospheres and nanospheroids. J Opt Soc Am A 25(11):2767–2775

    Article  Google Scholar 

  92. Kleinman SL, Sharma B, Blaber MG, Henry A-I, Valley N, Freeman RG, Natan MJ, Schatz GC, Van Duyne RP (2013) Structure enhancement factor relationships in single gold nanoantennas by surface-enhanced Raman excitation spectroscopy. J Am Chem Soc 135(1):301–308. doi:10.1021/ja309300d

    Article  CAS  Google Scholar 

  93. Lee J-H, Nam J-M, Jeon K-S, Lim D-K, Kim H, Kwon S, Lee H, Suh YD (2012) Tuning and maximizing the single-molecule surface-enhanced Raman scattering from DNA-tethered nanodumbbells. ACS Nano 6(11):9574–9584. doi:10.1021/nn3028216

    Article  CAS  Google Scholar 

  94. Khoury C, Vo-Dinh T (2008) Gold nanostars for surface-enhanced Raman scattering: synthesis, characterization and optimization. J Phys Chem C 112(48):18849–18859. doi:10.1021/jp8054747

    CAS  Google Scholar 

  95. Xie J, Zhang Q, Lee JY, Wang DIC (2008) The synthesis of SERS-active gold nanoflower tags for in vivo applications. ACS Nano 2(12):2473–2480. doi:10.1021/nn800442q

    Article  CAS  Google Scholar 

  96. Lu W, Singh AK, Khan SA, Senapati D, Yu H, Ray PC (2010) Gold nano-popcorn-based targeted diagnosis, nanotherapy treatment, and in situ monitoring of photothermal therapy response of prostate cancer cells using surface-enhanced Raman spectroscopy. J Am Chem Soc 132(51):18103–18114. doi:10.1021/ja104924b

    Article  CAS  Google Scholar 

  97. Osinkina L, Lohmüller T, Jäckel F, Feldmann J (2013) Synthesis of gold nanostar arrays as reliable, large-scale, homogeneous substrates for surface-enhanced Raman scattering imaging and spectroscopy. J Phys Chem C. doi:10.1021/jp312149d

    Google Scholar 

  98. Salehi M, Steinigeweg D, Ströbel P, Marx A, Packeisen J, Schlücker S (2012) Rapid immuno-SERS microscopy for tissue imaging with single-nanoparticle sensitivity. J Biophotonics. doi:10.1002/jbio.201200148

    Google Scholar 

  99. Alvarez-Puebla RA (2012) Effects of the excitation wavelength on the SERS spectrum. J Phys Chem Lett 3(7):857–866. doi:10.1021/jz201625j

    Article  CAS  Google Scholar 

  100. Sivapalan ST, Devetter BM, Yang TK, van Dijk T, Schulmerich MV, Carney PS, Bhargava R, Murphy CJ (2013) Off-resonance surface-enhanced Raman spectroscopy from gold nanorod suspensions as a function of aspect ratio: not what we thought. ACS Nano 7(3):2099–2105. doi:10.1021/nn305710k

    Article  CAS  Google Scholar 

  101. Wu LY, Ross BM, Hong S, Lee LP (2010) Bioinspired nanocorals with decoupled cellular targeting and sensing functionality. Small 6(4):503–507. doi:10.1002/smll.200901604

    Article  CAS  Google Scholar 

  102. Kang H, Jeong S, Park Y, Yim J, Jun B-H, Kyeong S, Yang J-K, Kim G, Hong S, Lee LP (2013) Near-Infrared SERS Nanoprobes with plasmonic Au/Ag hollow-shell assemblies for in vivo multiplex detection. Adv Funct Mater. doi:10.1002/adfm.201203726

    Google Scholar 

  103. Gandra N, Singamaneni S (2013) Bilayered Raman-intense gold nanostructures with hidden tags (BRIGHTs) for high-resolution bioimaging. Adv Mater 25(7):1022–1027. doi:10.1002/adma.201203415

    Article  CAS  Google Scholar 

  104. Wang L, Liu Y, Li W, Jiang X, Ji Y, Wu X, Xu L, Qiu Y, Zhao K, Wei T, Li Y, Zhao Y, Chen C (2011) Selective targeting of gold nanorods at the mitochondria of cancer cells: implications for cancer therapy. Nano Lett 11(2):772–780. doi:10.1021/nl103992v

    Article  CAS  Google Scholar 

  105. Prigodich AE, Randeria PS, Briley WE, Kim NJ, Daniel WL, Giljohann DA, Mirkin CA (2012) Multiplexed nanoflares: mRNA detection in live cells. Anal Chem 84(4):2062–2066. doi:10.1021/ac202648w

    Article  CAS  Google Scholar 

  106. Krpetic Z, Saleemi S, Prior IA, Sée V, Qureshi R, Brust M (2011) Negotiation of intracellular membrane barriers by TAT-modified gold nanoparticles. ACS Nano 5(6):5195–5201. doi:10.1021/nn201369k

    Article  CAS  Google Scholar 

  107. Berry CC, de la Fuente JM, Mullin M, Chu SWL, Curtis ASG (2007) Nuclear localization of HIV-1 tat functionalized gold nanoparticles. IEEE Trans Nanobiosci 6(4):262–269. doi:10.1109/TNB.2007.908973

    Article  CAS  Google Scholar 

  108. Pan L, He Q, Liu J, Chen Y, Ma M, Zhang L, Shi J (2012) Nuclear-targeted drug delivery of TAT peptide-conjugated monodisperse mesoporous silica nanoparticles. J Am Chem Soc 134(13):5722–5725. doi:10.1021/ja211035w

    Article  CAS  Google Scholar 

  109. Panté N, Kann M (2002) Nuclear pore complex is able to transport macromolecules with diameters of about 39 nm. Mol Biol Cell 13(2):425–434. doi:10.1091/mbc.01-06-0308

    Article  Google Scholar 

  110. Dam DHM, Lee JH, Sisco PN, Co DT, Zhang M, Wasielewski MR, Odom TW (2012) Direct observation of nanoparticle-cancer cell nucleus interactions. ACS Nano 6(4):3318–3326. doi:10.1021/nn300296p

    Article  CAS  Google Scholar 

  111. Sathuluri RR, Yoshikawa H, Shimizu E, Saito M, Tamiya E (2011) Gold nanoparticle-based surface-enhanced Raman scattering for noninvasive molecular probing of embryonic stem cell differentiation. PLoS One 6(8):e22802. doi:10.1371/journal.pone.0022802.t001

    Article  Google Scholar 

  112. Xie J, Lee S, Chen X (2010) Nanoparticle-based theranostic agents. Adv Drug Deliv Rev 62(11):1064–1079. doi:10.1016/j.addr.2010.07.009

    Article  CAS  Google Scholar 

  113. Wang Y, Yan B, Chen L (2013) SERS tags: novel optical nanoprobes for bioanalysis. Chem Rev 113(3):1391–1428. doi:10.1021/cr300120g

    Article  CAS  Google Scholar 

  114. Kneipp J, Kneipp H, Wittig B, Kneipp K (2010) Novel optical nanosensors for probing and imaging live cells. Nanomedicine 6(2):214–226. doi:10.1016/j.nano.2009.07.009

    Article  CAS  Google Scholar 

  115. Schlücker S (2009) SERS microscopy: nanoparticle probes and biomedical applications. Chemphyschem 10(9–10):1344–1354. doi:10.1002/cphc.200900119

    Article  CAS  Google Scholar 

  116. Liu R, Liu J-f, Zhou X-x, Jiang G-b (2011) Applications of Raman-based techniques to on-site and in-vivo analysis. Trends Anal Chem 30(9):1462–1476. doi:10.1016/j.trac.2011.06.011

    Article  CAS  Google Scholar 

  117. Alvarez-Puebla RA, Liz-Marzán LM (2010) SERS-based diagnosis and biodetection. Small 6(5):604–610. doi:10.1002/smll.200901820

    Article  CAS  Google Scholar 

  118. Han J, Burgess K (2010) Fluorescent indicators for intracellular pH. Chem Rev 110(5):2709–2728. doi:10.1021/cr900249z

    Article  CAS  Google Scholar 

  119. Allgeyer ES, Pongan A, Browne M, Mason MD (2009) Optical signal comparison of single fluorescent molecules and Raman active gold nanostars. Nano Lett 9(11):3816–3819. doi:10.1021/nl902008g

    Article  CAS  Google Scholar 

  120. Talley CE, Jusinski L, Hollars CW, Lane SM, Huser T (2004) Intracellular pH sensors based on surface-enhanced Raman scattering. Anal Chem 76(23):7064–7068. doi:10.1021/ac049093j

    Article  CAS  Google Scholar 

  121. Kneipp J, Kneipp H, Wittig B, Kneipp K (2010) Following the dynamics of pH in endosomes of live cells with SERS nanosensors. J Phys Chem C 114(16):7421–7426. doi:10.1021/jp910034z

    Article  CAS  Google Scholar 

  122. Pallaoro A, Braun GB, Reich NO, Moskovits M (2010) Mapping local pH in live cells using encapsulated fluorescent SERS nanotags. Small 6(5):618–622. doi:10.1002/smll.200901893

    Article  CAS  Google Scholar 

  123. Wang F, Widejko RG, Yang Z, Nguyen KT, Chen H, Fernando LP, Christensen KA, Anker JN (2012) Surface-enhanced Raman scattering detection of pH with silica-encapsulated 4-mercaptobenzoic acid-functionalized silver nanoparticles. Anal Chem 84(18):8013–8019. doi:10.1021/ac3018179

    Article  CAS  Google Scholar 

  124. Ochsenkuhn MA, Jess PR, Stoquert H, Dholakia K, Campbell CJ (2009) Nanoshells for surface-enhanced Raman spectroscopy in eukaryotic cells: cellular response and sensor development. ACS Nano 3(11):3613–3621. doi:10.1021/nn900681c

    Article  CAS  Google Scholar 

  125. Kneipp J, Kneipp H, Wittig B, Kneipp K (2007) One- and two-photon excited optical pH probing for cells using surface-enhanced Raman and hyper-Raman nanosensors. Nano Lett 7(9):2819–2823. doi:10.1021/nl071418z

    Article  CAS  Google Scholar 

  126. Bishnoi SW, Rozell CJ, Levin CS, Gheith MK, Johnson BR, Johnson DH, Halas NJ (2006) All-optical nanoscale pH meter. Nano Lett 6(8):1687–1692. doi:10.1021/nl060865w

    Article  CAS  Google Scholar 

  127. Canton I, Battaglia G (2012) Endocytosis at the nanoscale. Chem Soc Rev 41(7):2718–2739. doi:10.1039/c2cs15309b

    Article  CAS  Google Scholar 

  128. Iversen T-G, Skotland T, Sandvig K (2011) Endocytosis and intracellular transport of nanoparticles: present knowledge and need for future studies. Nano Today 6(2):176–185. doi:10.1016/j.nantod.2011.02.003

    Article  CAS  Google Scholar 

  129. Chithrani DB (2010) Intracellular uptake, transport, and processing of gold nanostructures. Mol Membr Biol 27(7):299–311. doi:10.3109/09687688.2010.507787

    Article  CAS  Google Scholar 

  130. Sahay G, Alakhova DY, Kabanov AV (2010) Endocytosis of nanomedicines. J Control Release 145(3):182–195. doi:10.1016/j.jconrel.2010.01.036

    Article  CAS  Google Scholar 

  131. Wang Z, Bonoiu A, Samoc M, Cui Y, Prasad PN (2008) Biological pH sensing based on surface enhanced Raman scattering through a 2-aminothiophenol-silver probe. Biosens Bioelectron 23(6):886–891. doi:10.1016/j.bios.2007.09.017

    Article  CAS  Google Scholar 

  132. Zong S, Wang Z, Yang J, Cui Y (2011) Intracellular pH sensing using p-aminothiophenol functionalized gold nanorods with low cytotoxicity. Anal Chem 83(11):4178–4183. doi:10.1021/ac200467z

    Article  CAS  Google Scholar 

  133. Auchinvole CAR, Richardson P, McGuinnes C, Mallikarjun V, Donaldson K, McNab H, Campbell CJ (2012) Monitoring intracellular redox potential changes using SERS nanosensors. ACS Nano 6(1):888–896. doi:10.1021/nn204397q

    Article  CAS  Google Scholar 

  134. Scaffidi J, Gregas MK, Seewaldt V, Vo-Dinh T (2009) SERS-based plasmonic nanobiosensing in single living cells. Anal Bioanal Chem 393(4):1135–1141. doi:10.1007/s00216-008-2521-y

    Article  CAS  Google Scholar 

  135. Vo-Dinh T, Alarie JP, Cullum BM, Griffin GD (2000) Antibody-based nanoprobe for measurement of a fluorescent analyte in a single cell. Nat Biotechnol 18(7):764–767. doi:10.1038/77337

    Article  CAS  Google Scholar 

  136. Kasili PM, Song JM, Vo-Dinh T (2004) Optical sensor for the detection of caspase-9 activity in a single cell. J Am Chem Soc 126(9):2799–2806. doi:10.1021/ja037388t

    Article  CAS  Google Scholar 

  137. Bálint S, Rao S, Marro M, Miškovský P, Petrov D (2011) Monitoring of local pH in photodynamic therapy–treated live cancer cells using surface-enhanced Raman scattering probes. J Raman Spectrosc 42(6):1215–1221. doi:10.1002/jrs.2856

    Article  CAS  Google Scholar 

  138. Hermanson GT (2008) Bioconjugate techniques, 2nd edn. Academic, New York

    Google Scholar 

  139. Sha MY, Xu H, Natan MJ, Cromer R (2008) Surface-enhanced Raman scattering tags for rapid and homogeneous detection of circulating tumor cells in the presence of human whole blood. J Am Chem Soc 130(51):17214–17215. doi:10.1021/ja804494m

    Article  CAS  Google Scholar 

  140. Wang Z, Zong S, Yang J, Li J, Cui Y (2011) Dual-mode probe based on mesoporous silica coated gold nanorods for targeting cancer cells. Biosens Bioelectron 26(6):2883–2889. doi:10.1016/j.bios.2010.11.032

    Article  CAS  Google Scholar 

  141. Wang X, Qian X, Beitler JJ, Chen ZG, Khuri FR, Lewis MM, Shin HJC, Nie S (2011) Detection of circulating tumor cells in human peripheral blood using surface-enhanced Raman scattering nanoparticles. Cancer Res 71(5):1526–1532. doi:10.1158/0008-5472.CAN-10-3069

    Article  CAS  Google Scholar 

  142. Nithipatikom K, McCoy MJ, Hawi SR, Nakamoto K, Adar F, Campbell WB (2003) Characterization and application of Raman labels for confocal Raman microspectroscopic detection of cellular proteins in single cells. Anal Biochem 322(2):198–207. doi:10.1016/j.ab.2003.07.020

    Article  CAS  Google Scholar 

  143. Shachaf CM, Elchuri SV, Koh AL, Zhu J, Nguyen LN, Mitchell DJ, Zhang J, Swartz KB, Sun L, Chan S, Sinclair R, Nolan GP (2009) A novel method for detection of phosphorylation in single cells by surface enhanced Raman scattering (SERS) using composite organic–inorganic nanoparticles (COINs). PLoS One 4(4):e5206. doi:10.1371/journal.pone.0005206

    Article  CAS  Google Scholar 

  144. Nolan JP, Duggan E, Liu E, Condello D, Dave I, Stoner SA (2012) Single cell analysis using surface enhanced Raman scattering (SERS) tags. Methods 57(3):272–279. doi:10.1016/j.ymeth.2012.03.024

    Article  CAS  Google Scholar 

  145. Lee S, Kim S, Choo J, Shin SY, Lee YH, Choi HY, Ha S, Kang K, Oh CH (2007) Biological imaging of HEK293 cells expressing PLCgamma1 using surface-enhanced Raman microscopy. Anal Chem 79(3):916–922. doi:10.1021/ac061246a

    Article  CAS  Google Scholar 

  146. Park H, Lee S, Chen L, Lee EK, Shin SY, Lee YH, Son SW, Oh CH, Song JM, Kang SH, Choo J (2009) SERS imaging of HER2-overexpressed MCF7 cells using antibody-conjugated gold nanorods. Phys Chem Chem Phys 11(34):7444–7449. doi:10.1039/b904592a

    Article  CAS  Google Scholar 

  147. Pallaoro A, Braun GB, Moskovits M (2011) Quantitative ratiometric discrimination between noncancerous and cancerous prostate cells based on neuropilin-1 overexpression. Proc Natl Acad Sci USA 108(40):16559–16564. doi:10.1073/pnas.1109490108

    Article  CAS  Google Scholar 

  148. Kennedy DC, Tay L-L, Lyn RK, Rouleau Y, Hulse J, Pezacki JP (2009) Nanoscale aggregation of cellular β2-adrenergic receptors measured by plasmonic interactions of functionalized nanoparticles. ACS Nano 3(8):2329–2339. doi:10.1021/nn900488u

    Article  CAS  Google Scholar 

  149. Kneipp J, Kneipp H, Rice WL, Kneipp K (2005) Optical probes for biological applications based on surface-enhanced Raman scattering from indocyanine green on gold nanoparticles. Anal Chem 77(8):2381–2385. doi:10.1021/ac050109v

    Article  CAS  Google Scholar 

  150. Stokes RJ, McKenzie F, McFarlane E, Ricketts A, Tetley L, Faulds K, Alexander J, Graham D (2009) Rapid cell mapping using nanoparticles and SERRS. Analyst 134(1):170–175. doi:10.1039/b815117b

    Article  CAS  Google Scholar 

  151. Sirimuthu NMS, Syme CD, Cooper JM (2010) Monitoring the uptake and redistribution of metal nanoparticles during cell culture using surface-enhanced Raman scattering spectroscopy. Anal Chem 82(17):7369–7373. doi:10.1021/ac101480t

    Article  CAS  Google Scholar 

  152. Matschulat A, Drescher D, Kneipp J (2010) Surface-enhanced Raman scattering hybrid nanoprobe multiplexing and imaging in biological systems. ACS Nano 4(6):3259–3269. doi:10.1021/nn100280z

    Article  CAS  Google Scholar 

  153. Rodriguez-Lorenzo L, Krpetic Z, Barbosa S, Alvarez-Puebla RA, Liz-Marzán LM, Prior IA, Brust M (2011) Intracellular mapping with SERS-encoded gold nanostars. Integr Biol 3(9):922–926. doi:10.1039/c1ib00029b

    Article  CAS  Google Scholar 

  154. Schlücker S, Schaeberle MD, Huffman SW, Levin IW (2003) Raman microspectroscopy: a comparison of point, line, and wide-field imaging methodologies. Anal Chem 75(16):4312–4318. doi:10.1021/ac034169h

    Article  CAS  Google Scholar 

  155. Zavaleta CL, Smith BR, Walton I, Doering W, Davis G, Shojaei B, Natan MJ, Gambhir SS (2009) Multiplexed imaging of surface enhanced Raman scattering nanotags in living mice using noninvasive Raman spectroscopy. Proc Natl Acad Sci USA 106(32):13511–13516. doi:10.1073/pnas.0813327106

    Article  CAS  Google Scholar 

  156. von Maltzahn G, Centrone A, Park J-H, Ramanathan R, Sailor MJ, Hatton TA, Bhatia SN (2009) SERS-coded gold nanorods as a multifunctional platform for densely multiplexed near-infrared imaging and photothermal heating. Adv Mater 21(31):3175–3180. doi:10.1002/adma.200803464

    Article  CAS  Google Scholar 

  157. Wang Y, Seebald JL, Szeto DP, Irudayaraj J (2010) Biocompatibility and biodistribution of surface-enhanced raman scattering nanoprobes in zebrafish embryos: in vivo and multiplex imaging. ACS Nano 4(7):4039–4053. doi:10.1021/nn100351h

    Article  CAS  Google Scholar 

  158. Maiti KK, Dinish US, Samanta A, Vendrell M, Soh K-S, Park S-J, Olivo M, Chang Y-T (2012) Multiplex targeted in vivo cancer detection using sensitive near-infrared SERS nanotags. Nano Today 7(2):85–93. doi:10.1016/j.nantod.2012.02.008

    Article  CAS  Google Scholar 

  159. Matousek P, Stone N (2013) Recent advances in the development of Raman spectroscopy for deep non-invasive medical diagnosis. J Biophotonics 6(1):7–19. doi:10.1002/jbio.201200141

    Article  CAS  Google Scholar 

  160. Dulkeith E, Niedereichholz T, Klar T, Feldmann J, von Plessen G, Gittins D, Mayya K, Caruso F (2004) Plasmon emission in photoexcited gold nanoparticles. Phys Rev B 70(20):205424. doi:10.1103/PhysRevB.70.205424

    Article  CAS  Google Scholar 

  161. Link S, El-Sayed MA (2003) Optical properties and ultrafast dynamics of metallic nanocrystals. Annu Rev Phys Chem 54:331–366. doi:10.1146/annurev.physchem.54.011002.103759

    Article  CAS  Google Scholar 

  162. Wu X, Ming T, Wang X, Wang P, Wang J, Chen J (2010) High-photoluminescence-yield gold nanocubes: for cell imaging and photothermal therapy. ACS Nano 4(1):113–120. doi:10.1021/nn901064m

    Article  CAS  Google Scholar 

  163. Grabolle M, Spieles M, Lesnyak V, Gaponik N, Eychmüller A, Resch-Genger U (2009) Determination of the fluorescence quantum yield of quantum dots: suitable procedures and achievable uncertainties. Anal Chem 81(15):6285–6294. doi:10.1021/ac900308v

    Article  CAS  Google Scholar 

  164. Chen Y, Zhang Y, Liang W, Li X (2012) Gold nanocages as contrast agents for two-photon luminescence endomicroscopy imaging. Nanomedicine 8(8):1267–1270. doi:10.1016/j.nano.2012.07.003

    Article  CAS  Google Scholar 

  165. Tong L, Wei Q, Wei A, Cheng J-X (2009) Gold nanorods as contrast agents for biological imaging: optical properties, surface conjugation and photothermal effects. Photochem Photobiol 85(1):21–32. doi:10.1111/j.1751-1097.2008.00507.x

    Article  CAS  Google Scholar 

  166. Pollnau M, Gamelin D, Lüthi S, Güdel H, Hehlen M (2000) Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems. Phys Rev B 61(5):3337–3346. doi:10.1103/PhysRevB.61.3337

    Article  CAS  Google Scholar 

  167. Au L, Zhang Q, Cobley CM, Gidding M, Schwartz AG, Chen J, Xia Y (2010) Quantifying the cellular uptake of antibody-conjugated Au nanocages by two-photon microscopy and inductively coupled plasma mass spectrometry. ACS Nano 4(1):35–42. doi:10.1021/nn901392m

    Article  CAS  Google Scholar 

  168. Zhang Y, Yu J, Birch DJS, Chen Y (2010) Gold nanorods for fluorescence lifetime imaging in biology. J Biomed Opt 15(2):020504. doi:10.1117/1.3366646

    Article  CAS  Google Scholar 

  169. Yuan H, Khoury CG, Fales A, Wilson C, Grant G, Vo-Dinh T (2012) Plasmonic gold nanostars: a potential agent for molecular imaging and cancer therapy. In: Biomedical optics and 3-D imaging. Optical Society of America, Washington, paper BM2A.8

    Google Scholar 

  170. Hutter E, Boridy S, Labrecque S, Lalancette-Hébert M, Kriz J, Winnik FM, Maysinger D (2010) Microglial response to gold nanoparticles. ACS Nano 4(5):2595–2606. doi:10.1021/nn901869f

    Article  CAS  Google Scholar 

  171. Cho EC, Zhang Y, Cai X, Moran CM, Wang LV, Xia Y (2013) Quantitative analysis of the fate of gold nanocages in vitro and in vivo after uptake by U87-MG tumor cells. Angew Chem Int Ed 52(4):1152–1155. doi:10.1002/anie.201208096

    Article  CAS  Google Scholar 

  172. Yelin D, Oron D, Thiberge S, Moses E, Silberberg Y (2003) Multiphoton plasmon-resonance microscopy. Opt Express 11(12):1385–1391

    Article  Google Scholar 

  173. Nagesha D, Laevsky GS, Lampton P, Banyal R, Warner C, DiMarzio C, Sridhar S (2007) In vitro imaging of embryonic stem cells using multiphoton luminescence of gold nanoparticles. Int J Nanomed 2(4):813–819

    CAS  Google Scholar 

  174. Huff TB, Hansen MN, Zhao Y, Cheng J-X, Wei A (2007) Controlling the cellular uptake of gold nanorods. Langmuir 23(4):1596–1599. doi:10.1021/la062642r

    Article  CAS  Google Scholar 

  175. Wei Q, Song H-M, Leonov AP, Hale JA, Oh D, Ong QK, Ritchie K, Wei A (2009) Gyromagnetic imaging: dynamic optical contrast using gold nanostars with magnetic cores. J Am Chem Soc 131(28):9728–9734. doi:10.1021/ja901562j

    Article  CAS  Google Scholar 

  176. Durr NJ, Larson T, Smith DK, Korgel BA, Sokolov K, Ben-Yakar A (2007) Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods. Nano Lett 7(4):941–945. doi:10.1021/nl062962v

    Article  CAS  Google Scholar 

  177. Bickford L, Sun J, Fu K, Lewinski N (2008) Enhanced multi-spectral imaging of live breast cancer cells using immunotargeted gold nanoshells and two-photon excitation microscopy. Nanotechnology 19:315102–315108. doi:10.1088/0957-4484/19/31/315102

    Article  CAS  Google Scholar 

  178. Wang H, Huff TB, Zweifel DA, He W, Low PS, Wei A, Cheng J-X (2005) In vitro and in vivo two-photon luminescence imaging of single gold nanorods. Proc Natl Acad Sci USA 102(44):15752–15756. doi:10.1073/pnas.0504892102

    Article  CAS  Google Scholar 

  179. Bouhelier A, Bachelot R, Lerondel G, Kostcheev S, Royer P, Wiederrecht GP (2005) Surface plasmon characteristics of tunable photoluminescence in single gold nanorods. Phys Rev Lett 95(26):267405

    Article  CAS  Google Scholar 

  180. Gregas MK, Scaffidi J, Lauly B, Vo-Dinh T (2010) Surface-enhanced Raman scattering detection and tracking of nanoprobes: enhanced uptake and nuclear targeting in single cells. Appl Spectrosc 64(8):858–866. doi:10.1366/000370210792081037

    Article  CAS  Google Scholar 

  181. Tan X, Wang Z, Yang J, Song C, Zhang R, Cui Y (2009) Polyvinylpyrrolidone- (PVP-) coated silver aggregates for high performance surface-enhanced Raman scattering in living cells. Nanotechnology 20(44):445102. doi:10.1088/0957-4484/20/44/445102

    Article  CAS  Google Scholar 

  182. Black KC, Kirkpatrick ND, Troutman TS, Xu L, Vagner J, Gillies RJ, Barton JK, Utzinger U, Romanowski M (2008) Gold nanorods targeted to delta opioid receptor: plasmon-resonant contrast and photothermal agents. Mol Imaging 7(1):50–57

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tuan Vo-Dinh.

Additional information

Published in the topical collection Optical Nanosensing in Cells with guest editor Francesco Baldini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuan, H., Register, J.K., Wang, HN. et al. Plasmonic nanoprobes for intracellular sensing and imaging. Anal Bioanal Chem 405, 6165–6180 (2013). https://doi.org/10.1007/s00216-013-6975-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-013-6975-1

Keywords

Navigation