Skip to main content
Log in

A novel homogeneous immunoassay for anthrax detection based on the AlphaLISA method: detection of B. anthracis spores and protective antigen (PA) in complex samples

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Amplified Luminescent Proximity Homogeneous Assay (AlphaLISA) technology is an energy-transfer-based assay, utilizing singlet oxygen as an energy donor to a fluorescent acceptor. The long singlet oxygen migration distance allows the energy transfer mechanism to go up to ∼200 nm, facilitating flexible and sensitive homogeneous immunoassays. While soluble protein detection using AlphaLISA was previously described, the detection of particles such as bacteria and viruses was not reported. In this work, we show for the first time the implementation of the AlphaLISA technology for the detection of a particulate antigen, i.e., Bacillus anthracis spores. Here, we show that an efficient particle immunoassay requires a high acceptor-to-donor ratio (>4:1). The results suggested that the high acceptor/donor ratio is required to avoid donor aggregation (“islands”) on the spore surface, hence facilitating donor/acceptor interaction. The developed assay enabled the detection of 106 spores/mL spiked in PBS. We also demonstrate the development of a highly sensitive AlphaLISA assay for the detection of the main toxin component of anthrax, protective antigen (PA). The assay enabled the detection of 10 and 100 pg/mL PA in buffer and spiked naïve rabbit sera, respectively, and was successfully implemented in sera of anthrax-infected rabbits. To summarize, this study demonstrates that AlphaLISA enables detection of anthrax spores and toxin, utilizing short homogeneous assays. Moreover, it is shown for the first time that this technology facilitates the detection of particulate entities and might be suitable for the detection of other bacteria or viruses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kobiler D, Weiss S, Levy H, Fisher M, Mechaly A, Pass A, Altboum Z (2006) Protective antigen as a correlative marker for anthrax in animal models. Infect Immun 74(10):5871–5876

    Article  CAS  Google Scholar 

  2. Weiss S, Kobiler D, Levy H, Pass A, Ophir Y, Rothschild N, Tal A, Schlomovitz J, Altboum Z (2011) Antibiotics cure anthrax in animal models. Antimicrob Agents Chemother 55(4):1533–1542

    Article  CAS  Google Scholar 

  3. Forster T (1948) Zwischenmolekulare energiewanderung und fluoreszenz. Ann Phys 437(1–2):55–75

    Article  Google Scholar 

  4. Valeur B (2002) Molecular fluorescence: principles and applications. Wiley-VCH, Weinheim

    Google Scholar 

  5. Chen X, Kwok PY (1997) Template-directed dye-terminator incorporation (TDI) assay: a homogeneous DNA diagnostic method based on fluorescence resonance energy transfer. Nucleic Acids Res 25(2):347–353

    Article  Google Scholar 

  6. Chen X, Zehnbauer B, Gnirke A, Kwok PY (1997) Fluorescence energy transfer detection as a homogeneous DNA diagnostic method. Proc Natl Acad Sci USA 94(20):10756–10761

    Article  CAS  Google Scholar 

  7. Kokko T, Liljenback T, Peltola MT, Kokko L, Soukka T (2008) Homogeneous dual-parameter assay for prostate-specific antigen based on fluorescence resonance energy transfer. Anal Chem 80(24):9763–9768

    Article  CAS  Google Scholar 

  8. Ueda H, Kubota K, Wang Y, Tsumoto K, Mahoney W, Kumagai I, Nagamune T (1999) Homogeneous noncompetitive immunoassay based on the energy transfer between fluorolabeled antibody variable domains (open sandwich fluoroimmunoassay). Biotechniques 27(4):738–742

    CAS  Google Scholar 

  9. Ullman EF (2005) Homogenous immunoassays. In: Wild D (ed) The immunoassay handbook. Elsevier Science, Oxford

    Google Scholar 

  10. Bader AN, Hoetzl S, Hofman EG, Voortman J, van Bergen en Henegouwen PM, van Meer G, Gerritsen HC (2011) Homo-FRET imaging as a tool to quantify protein and lipid clustering. Chemphyschem 12(3):475–483

    Article  CAS  Google Scholar 

  11. Fruhwirth GO, Fernandes LP, Weitsman G, Patel G, Kelleher M, Lawler K, Brock A, Poland SP, Matthews DR, Keri G, Barber PR, Vojnovic B, Ameer-Beg SM, Coolen AC, Fraternali F, Ng T (2011) How Forster resonance energy transfer imaging improves the understanding of protein interaction networks in cancer biology. Chemphyschem 12(3):442–461

    Article  CAS  Google Scholar 

  12. Grecco HE, Verveer PJ (2011) FRET in cell biology: still shining in the age of super-resolution? Chemphyschem 12(3):484–490

    Article  CAS  Google Scholar 

  13. Sun Y, Wallrabe H, Seo SA, Periasamy A (2011) FRET microscopy in 2010: the legacy of Theodor Forster on the 100th anniversary of his birth. Chemphyschem 12(3):462–474

    Article  CAS  Google Scholar 

  14. (2011) Preview: ChemPhysChem 4/2011. ChemPhysChem 12 (3):421–719. doi:10.1002/cphc.201190015

  15. Sonnichsen C, Reinhard BM, Liphardt J, Alivisatos AP (2005) A molecular ruler based on plasmon coupling of single gold and silver nanoparticles. Nat Biotechnol 23(6):741–745

    Article  Google Scholar 

  16. Ullman EF, Kirakossian H, Singh S, Wu ZP, Irvin BR, Pease JS, Switchenko AC, Irvine JD, Dafforn A, Skold CN et al (1994) Luminescent oxygen channeling immunoassay: measurement of particle binding kinetics by chemiluminescence. Proc Natl Acad Sci USA 91(12):5426–5430

    Article  CAS  Google Scholar 

  17. Reuveny S, White MD, Adar YY, Kafri Y, Altboum Z, Gozes Y, Kobiler D, Shafferman A, Velan B (2001) Search for correlates of protective immunity conferred by anthrax vaccine. Infect Immun 69(5):2888–2893

    Article  CAS  Google Scholar 

  18. Rosenfeld R, Marcus H, Ben-Arie E, Lachmi BE, Mechaly A, Reuveny S, Gat O, Mazor O, Ordentlich A (2009) Isolation and chimerization of a highly neutralizing antibody conferring passive protection against lethal Bacillus anthracis infection. PLoS One 4(7):e6351

    Article  Google Scholar 

  19. Weiss S, Levy H, Fisher M, Kobiler D, Altboum Z (2009) Involvement of TLR2 in innate response to Bacillus anthracis infection. Innate Immun 15(1):43–51

    Article  CAS  Google Scholar 

  20. Zahavy E, Fisher M, Bromberg A, Olshevsky U (2003) Detection of FRET pair on double labeled micro-sphere and B. anthracis spores, by flow-cytometry. Appl Environ Microbiol 69(4):2330–2339

    Article  CAS  Google Scholar 

  21. Cohen S, Mendelson I, Altboum Z, Kobiler D, Elhanany E, Bino T, Leitner M, Inbar I, Rosenberg H, Gozes Y, Barak R, Fisher M, Kronman C, Velan B, Shafferman A (2000) Attenuated nontoxinogenic and nonencapsulated recombinant Bacillus anthracis spore vaccines protect against anthrax. Infect Immun 68(8):4549–4558

    Article  CAS  Google Scholar 

  22. Elhanany E, Barak R, Fisher M, Kobiler D, Altboum Z (2001) Detection of specific Bacillus anthracis spore biomarkers by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 15(22):2110–2116

    Article  CAS  Google Scholar 

  23. Flashner Y, Fisher M, Tidhar A, Mechaly A, Gur D, Halperin G, Zahavy E, Mamroud E, Cohen S (2010) The search for early markers of plague: evidence for accumulation of soluble Yersinia pestis LcrV in bubonic and pneumonic mouse models of disease. FEMS Immunol Med Microbiol 59(2):197–206

    CAS  Google Scholar 

  24. ICH (1996) Guideline ICHHT validation of analytical procedures: methodology. In: ICH, Nov, 1996.

  25. Cauchon E, Liu S, Percival MD, Rowland SE, Xu D, Binkert C, Strickner P, Falgueyret JP (2009) Development of a homogeneous immunoassay for the detection of angiotensin I in plasma using AlphaLISA acceptor beads technology. Anal Biochem 388(1):134–139

    Article  CAS  Google Scholar 

  26. Henning LN, Comer JE, Stark GV, Ray BD, Tordoff KP, Knostman KA, Meister GT (2012) Development of an inhalational Bacillus anthracis exposure therapeutic model in cynomolgus macaques. Clin Vaccine Immunol 19(11):1765–1775

    Article  CAS  Google Scholar 

  27. Comer JE, Ray BD, Henning LN, Stark GV, Barnewall RE, Mott JM, Meister GT (2012) Characterization of a therapeutic model of inhalational anthrax using an increase in body temperature in New Zealand white rabbits as a trigger for treatment. Clin Vaccine Immunol 19(9):1517–1525

    Article  CAS  Google Scholar 

  28. Mabry R, Brasky K, Geiger R, Carrion R Jr, Hubbard GB, Leppla S, Patterson JL, Georgiou G, Iverson BL (2006) Detection of anthrax toxin in the serum of animals infected with Bacillus anthracis by using engineered immunoassays. Clin Vaccine Immunol 13(6):671–677

    Article  CAS  Google Scholar 

  29. Tang S, Moayeri M, Chen Z, Harma H, Zhao J, Hu H, Purcell RH, Leppla SH, Hewlett IK (2009) Detection of anthrax toxin by an ultrasensitive immunoassay using europium nanoparticles. Clin Vaccine Immunol 16(3):408–413

    Article  CAS  Google Scholar 

  30. Bin Z, Ke W, Jian J, Yun C, Biao H, Weiguo Z (2011) Quantitative determination of deoxynivalenol (DON) using the amplified luminescent proximity homogeneous assay (AlphaLISA). Food Anal Methods 4(2):228–232

    Article  Google Scholar 

  31. Poulsen F, Jensen KB (2007) A luminescent oxygen channeling immunoassay for the determination of insulin in human plasma. J Biomol Screen 12(2):240–247

    Article  CAS  Google Scholar 

  32. Zhang Y, Huang B, Zhang J, Wang K, Jin J (2012) Development of a homogeneous immunoassay based on the AlphaLISA method for the detection of chloramphenicol in milk, honey and eggs. J Sci Food Agric 92(9):1944–1947

    Article  CAS  Google Scholar 

  33. Sinclair R, Boone SA, Greenberg D, Keim P, Gerba CP (2008) Persistence of category A select agents in the environment. Appl Environ Microbiol 74(3):555–563

    Article  CAS  Google Scholar 

  34. Higgins JA, Cooper M, Schroeder-Tucker L, Black S, Miller D, Karns JS, Manthey E, Breeze R, Perdue ML (2003) A field investigation of Bacillus anthracis contamination of US Department of Agriculture and other Washington, DC, buildings during the anthrax attack of October 2001. Appl Environ Microbiol 69(1):593–599

    Article  CAS  Google Scholar 

  35. Irenge LM, Gala JL (2012) Rapid detection methods for Bacillus anthracis in environmental samples: a review. Appl Microbiol Biotechnol 93:1411–1412

    Article  CAS  Google Scholar 

  36. Rowe-Taitt CA, Golden JP, Feldstein MJ, Cras JJ, Hoffman KE, Ligler FS (2000) Array biosensor for detection of biohazards. Biosens Bioelectron 14(10):785–794

    Article  CAS  Google Scholar 

  37. Tims TB, Lim DV (2004) Rapid detection of Bacillus anthracis spores directly from powders with an evanescent wave fiber-optic biosensor. J Microbiol Methods 59(1):127–130

    Article  CAS  Google Scholar 

  38. Bruno JG, Yu H (1996) Immunomagnetic-electrochemiluminescent detection of Bacillus anthracis spores in soil matrices. Appl Environ Microbiol 62(9):3474–3476

    CAS  Google Scholar 

  39. Morel N, Volland H, Dano J, Lamourette P, Sylvestre P, Mock M, Creminon C (2012) Fast and sensitive detection of Bacillus anthracis spores by immunoassay. Appl Environ Microbiol 78(18):6491–6498

    Article  CAS  Google Scholar 

  40. Fisher M, Atiya-Nasagi Y, Simon I, Gordin M, Mechaly A, Yitzhaki S (2009) A combined immunomagnetic separation and lateral flow method for a sensitive on-site detection of Bacillus anthracis spores: assessment in water and dairy products. Lett Appl Microbiol 48(4):413–418

    Article  CAS  Google Scholar 

  41. Mechaly A, Zahavy E, Fisher M (2008) Development and implementation of a single-chain Fv antibody for specific detection of Bacillus anthracis spores. Appl Environ Microbiol 74(3):818–822

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eran Zahavy.

Additional information

Published in the topical collection Analytical and Bioanalytical Luminescence with guest editor Montserrat Pujol.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mechaly, A., Cohen, N., Weiss, S. et al. A novel homogeneous immunoassay for anthrax detection based on the AlphaLISA method: detection of B. anthracis spores and protective antigen (PA) in complex samples. Anal Bioanal Chem 405, 3965–3972 (2013). https://doi.org/10.1007/s00216-013-6752-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-013-6752-1

Keywords

Navigation