Skip to main content
Log in

Characteristics of the spin-trapping reaction of a free radical derived from AAPH: further development of the ORAC-ESR assay

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The characteristics of the spin-trapping reaction in the oxygen radical absorbance capacity (ORAC)-electron spin resonance (ESR) assay were examined, focusing on the kind of spin traps. 2,2-Azobis(2-amidinopropane) dihydrochloride (AAPH) was used as a free radical initiator. The spin adducts of the AAPH-derived free radical were assigned as those of the alkoxyl radical, RO· (R = H2N(HN)C–C(CH3)2). Among the spin traps tested, 5,5-dimethyl-1-pyrroline N-oxide (DMPO), 5,5-dimethyl-4-phenyl-1-pyrroline N-oxide (4PDMPO), 5-(2,2-dimethyl-1,3-propoxycyclophosphoryl)-5-methyl-1-pyrroline N-oxide (CYPMPO), and 5-diethoxyphosphoryl-5-methyl-1-pyrroline N-oxide (DEPMPO) were applicable to the ORAC-ESR assay. Optimal formation of spin-trapped radical adduct was observed with 1 mM AAPH, 10 mM spin trap, and 5 s UV irradiation. The calibration curve (the Stern–Volmer’s plot) for each spin trap showed good linearity, and their slopes, k SB/k ST, were estimated to be 87.7 ± 2.3, 267 ± 15, 228 ± 9, and 213 ± 16 for DMPO, 4PDMPO, CYPMPO, and DEPMPO, respectively. Though the k SB/k ST values for selected biosubstances varied with various spin traps, their ratios to Trolox (the relative ORAC values) were almost the same for all spin traps tested. The ORAC-ESR assay also had a very good reproducibility. The ORAC-ESR assay was conducted under stoichiometric experimental conditions. The present results demonstrate the superiority of the ORAC-ESR assay.

Structures of spin traps, ESR spectra of their spin adducts of AAPH-derived free radical, and their Stern-Volmer’s plots for Trolox.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Petersen OH, Spät A, Verkhratsky A (2005) Philos T Roy Soc B 360:2197–2199

    Article  Google Scholar 

  2. Castro L, Freeman BA (2001) Nutrition 17:161–165

    Article  CAS  Google Scholar 

  3. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Free Radical Biol Med 26:1231–1237

    Article  CAS  Google Scholar 

  4. Obón JM, Castellar MR, Cascales JA, Fernández-López JA (2005) Food Res Int 38:843–845

    Article  Google Scholar 

  5. Lee JM, Chung H, Chang PS, Lee JH (2007) Food Chem 103:662–669

    Article  CAS  Google Scholar 

  6. Apak R, Güçlü K, Demirata B, Özyürek M, Çelik SE, Bektaşoğlu B, Berker KI, Özyurt D (2007) Molecules 12:1496–1547

    Article  CAS  Google Scholar 

  7. Celi P, Sullivan M, Evans D (2010) Vet J 183:217–218

    Article  CAS  Google Scholar 

  8. Carlsen MH, Halvorsen BL, Holte K, Bøhn SK, Dragland S, Sampson L, Willey C, Senoo H, Umezono Y, Sanada C, Barikmo I, Berhe N, Willett WC, Phillips KM, Jacobs DR Jr, Blomhoff R (2010) Nutr J 9:3–13

    Article  Google Scholar 

  9. Nutrient Data Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, US Department of Agriculture, Arkansas Children’s Nutrition Center (2007) Oxygen radical absorbance capacity (ORAC) of selected foods—2007. Nutrient Data Laboratory, Beltsville, MA

    Google Scholar 

  10. Nutrient Data Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, U.S. Department of Agriculture (2010) USDA Database for the oxygen radical absorbance capacity (ORAC) of selected foods, release 2. Nutrient Data Laboratory, Beltsville, MA

    Google Scholar 

  11. Cao G, Prior RL (1998) Clin Chem 44:1309–1315

    CAS  Google Scholar 

  12. Botero D, Ebbeling CB, Blumberg JB, Ribaya-Mercado JD, Creager MA, Swain JF, Feldman HA, Ludwig DS (2009) Obesity 17:1664–1670

    Article  CAS  Google Scholar 

  13. Cao G, Alessio HM, Cutler RG (1993) Free Radical Biol Med 14:303–311

    Article  CAS  Google Scholar 

  14. Cao G, Prior RL (1999) Method Enzymol 299:50–62

    Article  CAS  Google Scholar 

  15. Ou B, Hampsch-Woodill M, Prior RL (2001) J Agric Food Chem 49:4619–4626

    Article  CAS  Google Scholar 

  16. Prior RL, Hoang H, Gu L, Wu X, Bacchiocca M, Howard L, Hampsch-Woodill M, Huang D, Ou B, Jacob R (2003) J Agric Food Chem 51:3273–3279

    Article  CAS  Google Scholar 

  17. Togashi DM, Szczupak B, Ryder AG, Calvet A, O’Loughlin M (2009) J Phys Chem 113:2757–2767

    CAS  Google Scholar 

  18. Posokhov YO, Kyrychenko A, Ladokhin AS (2010) Anal Biochem 407:284–286

    Article  CAS  Google Scholar 

  19. Li T, Yang Z, Li Y, Liu Z, Qi G, Wang B (2011) Dyes Pigm 88:103–108

    Article  CAS  Google Scholar 

  20. Glazer AN (1988) FASEB J 2:2487–2491

    CAS  Google Scholar 

  21. DeLange RJ, Glazer AN (1989) Anal Biochem 177:300–306

    Article  CAS  Google Scholar 

  22. Kohri S, Fujii H, Oowada S, Endoh N, Sueishi Y, Kusakabe M, Shimmei M, Kotake Y (2009) Anal Biochem 386:167–171

    Article  CAS  Google Scholar 

  23. Sakurai Y, Sanuki H, Komatsu-Watanabe R, Ideguchi T, Yanagi N, Kawai K, Kanaori K, Tajima K (2008) Chem Lett 37:1270–1271

    Article  CAS  Google Scholar 

  24. Oehler UM, Janzen EG (1982) Can J Chem 60:1542–1548

    Article  CAS  Google Scholar 

  25. Krainev AG, Bigelow DJ (1996) J Chem Soc Perk T 2:747–754

    Article  Google Scholar 

  26. Wahl RUR, Zeng L, Madison SA, DePinto RL, Shay BJ (1998) J Chem Soc Perk T 2:2009–2017

    Article  Google Scholar 

  27. Finkelstein E, Rosen GM, Rauckman EJ (1982) Mol Pharmacol 21:262–265

    CAS  Google Scholar 

  28. Grover TA, Piette LH (1981) Arch Biochem Biophys 212:105–114

    Article  CAS  Google Scholar 

  29. Thornalley PJ, Trotta RJ, Stern A (1983) Biochim Biophys Acta 759:16–22

    Article  CAS  Google Scholar 

  30. Marriott PR, Perkins MJ, Griller D (1980) Can J Chem 58:803–807

    Article  CAS  Google Scholar 

  31. Nishi M, Hagi A, Ide H, Murakami A, Makino K (1992) Biochem Int 27:651–659

    CAS  Google Scholar 

  32. Konaka R, Kawai M, Noda H, Kohno M, Niwa R (1995) Free Radical Res 23:15–25

    Article  CAS  Google Scholar 

  33. Harbour JR, Chow V, Bolton JR (1974) Can J Chem 52:3549–3553

    Article  CAS  Google Scholar 

  34. Saprin AN, Piette LH (1977) Arch Biochem Biophys 180:480–492

    Article  CAS  Google Scholar 

  35. Ledwith A, Russell PJ, Sutcliffe LH (1973) P R Soc A 332:151–166

    Article  CAS  Google Scholar 

  36. Kamibayashi M, Oowada S, Kameda H, Okada T, Inanami O, Ohta S, Ozawa T, Makino K, Kotake Y (2006) Free Radical Res 40:1166–1172

    Article  CAS  Google Scholar 

  37. Saito K, Takahashi M, Kamibayashi M, Ozawa T, Kohno M (2009) Free Radical Res 43:668–676

    Article  CAS  Google Scholar 

  38. Eaton GR, Eaton SS, Barr DP, Weber RT (2010) Quantitative EPR. Springer, Wien, pp 45–48

    Book  Google Scholar 

  39. Werber J, Wang YJ, Milligan M, Li X, Ji JA (2011) J Pharm Sci 100:3307–3315

    Article  CAS  Google Scholar 

  40. Mitsuta K, Mizuta Y, Kohno M, Hiramatsu M, Mori A (1990) Bull Chem Soc Jpn 63:187–191

    Article  CAS  Google Scholar 

  41. Nakajima A, Matsuda E, Ueda Y, Tajima K (2010) Can J Chem 88:556–562

    Article  CAS  Google Scholar 

  42. Dávalos A, Gómez-Cordovés C, Bartolomé B (2004) J Agric Food Chem 52:48–54

    Article  Google Scholar 

  43. López-Alarcón C, Lissi E (2005) Free Radical Res 39:729–736

    Article  Google Scholar 

  44. López-Alarcón C, Lissi E (2006) Free Radical Res 40:979–985

    Article  Google Scholar 

  45. Alarcón E, Campos AM, Edwards AM, Lissi E, López-Alarcón C (2008) Food Chem 107:1114–1119

    Article  Google Scholar 

  46. Bors W, Michel C (1999) Free Radical Biol Med 27:1413–1426

    Article  CAS  Google Scholar 

  47. Bors W, Michel C, Stettmaier K, Lu Y, Foo LY (2003) Biochim Biophys Acta 1620:97–107

    Article  CAS  Google Scholar 

  48. Javanovic SV, Hara Y, Steenken S, Simic MG (1995) J Am Chem Soc 117:9881–9888

    Article  Google Scholar 

  49. Bors W, Langebartels C, Michel C, Sandermann H Jr (1989) Phytochemistry 28:1589–1595

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a cooperative grant for innovative technology and advanced research in evolutional areas from the Ministry of Education, Science, Sports, and Culture of Japan. The authors wish to thank Professor Yoshinari Baba for his continuous guidance and encouragement through this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Nakajima.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakajima, A., Matsuda, E., Masuda, Y. et al. Characteristics of the spin-trapping reaction of a free radical derived from AAPH: further development of the ORAC-ESR assay. Anal Bioanal Chem 403, 1961–1970 (2012). https://doi.org/10.1007/s00216-012-6021-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-012-6021-8

Keywords

Navigation