Skip to main content
Log in

Design, characterization, and evaluation of peptide arrays allowing the direct monitoring of MMP activities

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Characterization of matrix metalloprotease (MMP) activities is of increasing interest for cancer prognosis or treatment follow-up. Indeed, MMP-1, -2 and -9 are widely involved in the growth of many tumors and progression steps such as angiogenesis, invasion, and metastasis. Fluorogenic peptide MMP substrates were previously synthesized with the aim of detecting MMP activities. One of their drawbacks is their limited solubility in biological media. Grafting them onto a solid support represented a novel way to yield efficient analysis devices whilst at the same time decreasing the quantities of peptides used. Novel peptide arrays were designed in order to detect MMP activities in biological fluids. Silicon plates were used as the solid support for the design of these novel tools. These were functionalized by organic self-assembled monolayers (SAMs) on which fluorogenic peptides were covalently coupled. SAM and peptide grafting on silicon plates were confirmed by epifluorescence, ellipsometry, and FT-IR analysis. Enzymatic assays were monitored by fluorescence spectrometry and showed that immobilized linear peptides were recognized and cleaved by MMPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

DAC:

7-diethylamino coumarin-3-carboxylic acid

DCM:

methylene chloride

DIC:

N,N′-diisopropyl carbodiimide

DIEA:

N,N′-diisopropydiethylamine

DMF:

N,N-dimethylformamide

ECM:

extracellular matrix

FRET:

fluorescence resonance energy transfer

FT-IR:

Fourier-transform infrared

HOBt:

N-hydroxybenzotriazole

MC:

7-methoxy coumarin-3-carboxylic acid

MMP:

matrix metalloprotease

MS:

mass spectrometry

SAM:

self assembled monolayer

TEG:

triethyleneglycol

THF:

tetrahydrofuran

TLC:

thin layer chromatography

TRIS:

tris(hydroxymethyl)aminomethane

References

  1. Page-McCaw A, Ewald AJ, Werb Z (2007) Matrix metalloproteinases and the regulation of tissue remodelling. Nat Rev Mol Cell Biol 8(3):221–233

    Article  CAS  Google Scholar 

  2. Rodriguez D, Morrison CJ, Overall CM (2010) Matrix metalloproteinases: what do they not do? New substrates and biological roles identified by murine models and proteomics. Biochim Biophys Acta 1803(1):39–54

    Article  CAS  Google Scholar 

  3. Delassus GS, Cho H, Hoang S, Eliceiri GL (2010) Many new down- and up-regulatory signaling pathways, from known cancer progression suppressors to matrix metalloproteinases, differ widely in cells of various cancers. J Cell Physiol 224(2):549–558

    Article  CAS  Google Scholar 

  4. Kessenbrock K, Plaks V, Werb Z (2010) Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 141(1):52–67

    Article  CAS  Google Scholar 

  5. Deryugina E, Quigley J (2006) Matrix metalloproteinases and tumor metastasis. Cancer Metastasis Rev 25(1):9–34

    Article  CAS  Google Scholar 

  6. Joyce ER (2005) Matrix metalloproteinases and angiogenesis. J Cell Mol Med 9(2):267–285

    Article  Google Scholar 

  7. Diamantopoulos N, Boutis AL, Koratzis I, Andreadis C, Galaktidou G, Mouratidou D, Kortsaris A (2010) Matrix metalloproteinases and proangiogenic factors in testicular germ cell tumors. J BUON 15(1):116–121

    CAS  Google Scholar 

  8. Zhang Q, Yang M, Shen J, Gerhold LM, Hoffman RM, Xing HR (2010) The role of the intravascular microenvironment in spontaneous metastasis development. Int J Cancer J Int du Cancer 126(11):2534–2541

    CAS  Google Scholar 

  9. Deryugina EI, Quigley JP (2010) Pleiotropic roles of matrix metalloproteinases in tumor angiogenesis: contrasting, overlapping and compensatory functions. Biochim Biophys Acta 1803(1):103–120

    Article  CAS  Google Scholar 

  10. Cauwe B, Opdenakker G (2010) Intracellular substrate cleavage: a novel dimension in the biochemistry, biology and pathology of matrix metalloproteinases. Crit Rev Biochem Mol Biol 45(5):351–423

    Article  CAS  Google Scholar 

  11. Gray E, Thomas TL, Betmouni S, Scolding N, Love S (2008) Elevated matrix metalloproteinase-9 and degradation of perineuronal nets in cerebrocortical multiple sclerosis plaques. J Neuropathol Exp Neurol 67(9):888–899

    Article  Google Scholar 

  12. Zhu J, Yu DT (2006) Matrix metalloproteinase expression in the spondyloarthropathies. Curr Opin Rheumatol 18(4):364–368

    Article  CAS  Google Scholar 

  13. Spinale FG (2002) Matrix metalloproteinases: regulation and dysregulation in the failing heart. Circ Res 90(5):520–530. doi:10.1161/01.res.0000013290.12884.a3

    Article  CAS  Google Scholar 

  14. Lemmens-Gruber R, Kamyar MR, Dornetshuber R (2009) Cyclodepsipeptides—potential drugs and lead compounds in the drug development process. Curr Med Chem 16(9):1122–1137

    Article  CAS  Google Scholar 

  15. Lee S, Xie J, Chen X (2010) Peptides and peptide hormones for molecular imaging and disease diagnosis. Chem Rev 110(5):3087–3111

    Article  CAS  Google Scholar 

  16. Gonçalves M, Estieu-Gionnet K, Berthelot T, Laïn G, Bayle M, Canron X, Betz N, Bikfalvi A, Déléris G (2005) Design, synthesis, and evaluation of original carriers for targeting vascular endothelial growth factor receptor interactions. Pharm Res 22(8):1411–1421

    Article  Google Scholar 

  17. Okarvi SM (2008) Peptide-based radiopharmaceuticals and cytotoxic conjugates: Potential tools against cancer. Cancer Treat Rev 34(1):13–26

    Article  CAS  Google Scholar 

  18. Lombard C, Saulnier J, Wallach J (2005) Assays of matrix metalloproteinases (MMPs) activities: a review. Biochimie 87(3–4):265–272

    Article  CAS  Google Scholar 

  19. Tauro JR, Lee B-S, Lateef SS, Gemeinhart RA (2008) Matrix metalloprotease selective peptide substrates cleavage within hydrogel matrices for cancer chemotherapy activation. Peptides 29(11):1965–1973

    Article  CAS  Google Scholar 

  20. Moustoifa E-F, Alouini M-A, Salaun A, Berthelot T, Bartegi A, Albenque-Rubio S, Déléris G (2010) Novel cyclopeptides for the design of MMP directed delivery devices: a novel smart delivery paradigm. Pharm Res 27(8):1713–1721

    Article  CAS  Google Scholar 

  21. Nagase H, Fields CG, Fields GB (1994) Design and characterization of a fluorogenic substrate selectively hydrolyzed by stromelysin 1 (matrix metalloproteinase-3). J Biol Chem 269(33):20952–20957

    CAS  Google Scholar 

  22. Devel L, Rogakos V, David A, Makaritis A, Beau F, Cuniasse P, Yiotakis A, Dive V (2006) Development of selective inhibitors and substrate of matrix metalloproteinase-12. J Biol Chem 281(16):11152–11160. doi:10.1074/jbc.M600222200

    Article  CAS  Google Scholar 

  23. Bickett DM, Green MD, Berman J, Dezube M, Howe AS, Brown PJ, Roth JT, McGeehan GM (1993) A high throughput fluorogenic substrate for interstitial collagenase (MMP-1) and gelatinase (MMP-9). Anal Biochem 212(1):58–64

    Article  CAS  Google Scholar 

  24. Knight CG, Willenbrock F, Murphy G (1992) A novel coumarin-labelled peptide for sensitive continuous assays of the matrix metalloproteinases. FEBS Lett 296(3):263–266

    Article  CAS  Google Scholar 

  25. Vegas AJ, Fuller JH, Koehler AN (2008) Small-molecule microarrays as tools in ligand discovery. Chem Soc Rev 37(7):1385–1394

    Article  CAS  Google Scholar 

  26. Köhn M (2009) Immobilization strategies for small molecule, peptide and protein microarrays. J Pept Sci 15(6):393–397

    Article  Google Scholar 

  27. Dragoni E, Calderone V, Fragai M, Jaiswal R, Luchinat C, Nativi C (2009) Biotin-tagged probes for MMP expression and activation: design, synthesis, and binding properties. Bioconjug Chem 20(4):719–727

    Article  CAS  Google Scholar 

  28. Go K, Horikawa Y, Garcia R, Villarreal FJ (2008) Fluorescent method for detection of cleaved collagens using O-phthaldialdehyde (OPA). J Biochem Biophys Methods 70(6):878–882

    Article  CAS  Google Scholar 

  29. Bolduc OR, Pelletier JN, Masson JF (2010) SPR Biosensing in crude serum using ultralow fouling binary patterned peptide SAM. Anal Chem 82(9):3699–3706

    Article  CAS  Google Scholar 

  30. Overall CM, Dean RA (2006) Degradomics: systems biology of the protease web. Pleiotropic roles of MMPs in cancer. Cancer Metastasis Rev 25(1):69–75

    Article  Google Scholar 

  31. Li J, Nayak S, Mrksich M (2010) Rate enhancement of an interfacial biochemical reaction through localization of substrate and enzyme by an adaptor domain. J Phys Chem B 114(46):15113–15118

    Article  CAS  Google Scholar 

  32. Berthelot T, Laïn G, Latxague L, Déleris G (2004) Synthesis of novel fluorogenic L-Fmoc lysine derivatives as potential tools for imaging cells. J Fluoresc 14(6):671–675

    Article  CAS  Google Scholar 

  33. Kulkarni SA, Mirji SA, Mandale AB, Vijayamohanan KP (2006) Thermal stability of self-assembled octadecyltrichlorosilane monolayers on planar and curved silica surfaces. Thin Solid Films 496(2):420–425

    Article  CAS  Google Scholar 

  34. Appelhans D, Ferse D, Adler HJP, Plieth W, Fikus A, Grundke K, Schmitt FJ, Bayer T, Adolphi B (2000) Self-assembled monolayers prepared from [omega]-thiophene-functionalized n-alkyltrichlorosilane on silicon substrates. Colloids Surf, A Physicochem Eng Asp 161(1):203–212

    Article  CAS  Google Scholar 

  35. Ehrhart J-C, Bennetau B, Renaud L, Madrange J-P, Thomas L, Morisot J, Brosseau A, Allano S, Tauc P, Tran P-L (2008) A new immunosensor for breast cancer cell detection using antibody-coated long alkylsilane self-assembled monolayers in a parallel plate flow chamber. Biosens Bioelectron 24(3):467–474

    Article  CAS  Google Scholar 

  36. Chandekar A, Sengupta SK, Whitten JE (2010) Thermal stability of thiol and silane monolayers: a comparative study. Appl Surf Sci 256(9):2742–2749

    Article  CAS  Google Scholar 

  37. Cohen SR, Naaman R, Sagiv J (1986) Thermally induced disorder in organized organic monolayers on solid substrates. J Phys Chem 90(14):3054–3056

    Article  CAS  Google Scholar 

  38. Jin ZH, Vezenov DV, Lee YW, Zull JE, Sukenik CN, Savinell RF (1994) Alternating current impedance characterization of the structure of alkylsiloxane self-assembled monolayers on silicon. Langmuir 10(8):2662–2671

    Article  CAS  Google Scholar 

  39. Li H-L, Fu A-P, Xu D-S, Guo GL-L, Tang Y-Q (2002) In situ silanization reaction on the surface of freshly prepared porous silicon. Langmuir 18(8):3198–3202

    Article  CAS  Google Scholar 

  40. Tsukruk VV, Luzinov I, Julthongpiput D (1999) Sticky molecular surfaces: epoxysilane self-assembled monolayers. Langmuir 15(9):3029–3032

    Article  CAS  Google Scholar 

  41. Kurth DG, Bein T (1993) Surface reactions on thin layers of silane coupling agents. Langmuir 9(11):2965–2973

    Article  CAS  Google Scholar 

  42. Deleris G, Rubio S, Benneteau B, Desbat B, Buffiere F, Chagnau JL (2008) Method for preparing a substrate for immobilizing a cell, said substrate and uses thereof. France Patent WO/2008/125637, PCT/EP2008/054442

  43. Mrksich M (2000) A surface chemistry approach to studying cell adhesion. Chem Soc Rev 29:267–273

    Article  CAS  Google Scholar 

  44. Hoffmann C, Tovar GEM (2006) Mixed self-assembled monolayers (SAMs) consisting of methoxy-tri(ethylene glycol)-terminated and alkyl-terminated dimethylchlorosilanes control the non-specific adsorption of proteins at oxidic surfaces. J Colloid Interface Sci 295(2):427–435

    Article  CAS  Google Scholar 

  45. Lewis LN, Lewis N (1986) Platinum-catalyzed hydrosilylation—colloid formation as the essential step. J Am Chem Soc 108(23):7228–7231

    Article  CAS  Google Scholar 

  46. Lewis LN (1990) On the mechanism of metal colloid catalyzed hydrosilylation: proposed explanations for electronic effects and oxygen cocatalysis. J Am Chem Soc 112(16):5998–6004

    Article  CAS  Google Scholar 

  47. Coutts-Lendon CA, Wright NA, Mieso EV, Koenig JL (2003) The use of FT-IR imaging as an analytical tool for the characterization of drug delivery systems. J Control Release 93(3):223–248

    Article  CAS  Google Scholar 

  48. Berthelot T, Talbot JC, Lain G, Deleris G, Latxague L (2005) Synthesis of N epsilon-(7-diethylaminocoumarin-3-carboxyl)- and N epsilon-(7-methoxycoumarin-3-carboxyl)-L-Fmoc lysine as tools for protease cleavage detection by fluorescence. J Pept Sci 11(3):153–160

    Article  CAS  Google Scholar 

  49. Nagase H, Fields GB (1996) Human matrix metalloproteinase specificity studies using collagen sequence-based synthetic peptides. Pept Sci 40(4):399–416. doi:10.1002/(sici)1097-0282(1996) 40:4<399::aid-bip5>3.0.co;2-r

    Article  CAS  Google Scholar 

  50. Turk BE, Huang LL, Piro ET, Cantley LC (2001) Determination of protease cleavage site motifs using mixture-based oriented peptide libraries. Nat Biotech 19(7):661–667

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to warmly thank Dr. Bernard Desbat (CNRS Bordeaux) for helpful discussions and technical support for ellipsometry analysis and the Conseil Régional d’Aquitaine and Ligue Nationale Contre le Cancer for financial support. Careful reading and corrections of our manuscript by Dr. Robert Dodd are greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed-Anis Alouini.

Additional information

Professor Déléris regrettably deceased in January 2012.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM1

(PDF 459 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alouini, MA., Moustoifa, EF., Rubio, S.A. et al. Design, characterization, and evaluation of peptide arrays allowing the direct monitoring of MMP activities. Anal Bioanal Chem 403, 185–194 (2012). https://doi.org/10.1007/s00216-012-5760-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-012-5760-x

Keywords

Navigation