Skip to main content
Log in

Microbial degradation of physiologically active peptides by strain B-9

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The reaction of some physiologically active peptides with bacterial strain B-9 has been investigated. Bradykinin, β-endorphin, and [Leu5]enkephalin were quickly degraded, with half-lives of <5 min. Somatostatin, substance P, and angiotensin I were degraded relatively smoothly, with half-lives of 10 min to 1 h, whereas oxytocin and insulin were slowly degraded, with half-lives of 1 and 4 days, respectively. Vasopressin was barely degraded, with a half-life of >7 days. Linearized vasopressin, prepared by the reductive cleavage of the disulfide bond followed by alkylation with iodoacetamide, was degraded significantly faster than intact vasopressin, with a half-life of 2.5 h. A loop formed by disulfide bond formation was regarded as one of the degradation-resistant factors. Hydrolysis of the peptides in this study took place through cleavage of various peptide bonds, and the strain B-9 may bear similarities to the neutral endopeptidase in terms of its broad selectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Carmichael WW (1994) The toxins of cyanobacteria. Sci Am 270(January):78–86

    Article  CAS  Google Scholar 

  2. Sivonen K, Jones G (1999) Cyanobacterial toxins. In: Chorus I, Bartram J (eds) Toxic cyanobacteria in water: a guide to their public health consequences, monitoring and management. E & FN Spon, London, pp 41–111

    Google Scholar 

  3. Kuiper-Goodman T, Falconer IR, Fitzgerald J (1999) Human health aspects. In: Chorus I, Bartram J (eds) Toxic cyanobacteria in water: a guide to their public health consequences, monitoring and management. E & FN Spon, London, pp 113–153

    Google Scholar 

  4. Eriksson JE, Toivola D, Meriluoto JAO, Karaki H, Han Y-G, Hartshorne D (1990) Hepatocyte deformation induced by cyanobacterial toxins reflects inhibition of protein phosphatases. Biochem Biophys Res Commun 173:1347–1353

    Article  CAS  Google Scholar 

  5. Jones GJ, Orr PT (1994) Release and degradation of microcystin following algicide treatment of a Microcystis aeruginosa bloom in a recreational lake, as determined by HPLC and protein phosphatase inhibition assay. Water Res 28:871–876

    Article  CAS  Google Scholar 

  6. Tsuji K, Naito S, Kondo F, Ishikawa N, Watanabe FM, Suzuki M, Harada K-I (1994) Stability of microcystins from cyanobacteria: effect of light on decomposition and isomerization. Environ Sci Technol 28:173–177

    Article  CAS  Google Scholar 

  7. Tsuji K, Asakawa M, Anzai Y, Sumino T, Harada K-I (2006) Degradation of microcystins using immobilized microorganism isolated in an eutrophic lake. Chemosphere 65:117–124

    Article  CAS  Google Scholar 

  8. Maruyama T, Park HD, Ozawa K, Tanaka Y, Sumino T, Hamana K, Hiraishi A, Kato K (2006) Sphingosinicella microcystinivorans gen. nov., sp. nov., a microcystin-degrading bacterium. Int J Syst Evol Microbiol 56:85–89

    Article  CAS  Google Scholar 

  9. Imanishi S, Kato H, Mizuno M, Tsuji K, Harada K-I (2005) Bacterial degradation of microcystins and nodularin. Chem Res Toxicol 18:591–598

    Article  CAS  Google Scholar 

  10. Kato H, Imanishi SY, Tsuji K, Harada K-I (2007) Microbial degradation of cyanobacterial cyclic peptides. Water Res 41:1754–1762

    Article  CAS  Google Scholar 

  11. Jones GJ, Bourne DG, Blakeley RL, Doelle H (1994) Degradation of the cyanobacterial hepatotoxin microcystin by aquatic bacteria. Nat Toxins 2:228–235

    Article  CAS  Google Scholar 

  12. Park HD, Sasaki Y, Maruyama T, Yanagisawa E, Hiraishi A, Kato K (2001) Degradation of the cyanobacterial hepatotoxin microcystin by a new bacterium isolated from a hypertrophic lake. Environ Toxicol 16:337–343

    Article  CAS  Google Scholar 

  13. Valeria AM, Ricardo EJ, Stephan P, Alberto WD (2006) Degradation of microcystin-RR by Sphingomonas sp. CBA4 isolated from San Roque reservoir (Cordoba—Argentina). Biodegradation 17:447–455

    Article  Google Scholar 

  14. Manage PM, Edwards C, Singh BK, Lawton LA (2009) Isolation and identification of novel microcystin-degrading bacteria. Appl Environ Microbiol 75:6924–6928

    Article  CAS  Google Scholar 

  15. Bourne DG, Jones GJ, Blakeley RL, Jones A, Negri AP, Riddles P (1996) Enzymatic pathway for the bacterial degradation of the cyanobacterial cyclic peptide toxin microcystin LR. Appl Environ Microbiol 62:4086–4094

    CAS  Google Scholar 

  16. Bourne DG, Riddles P, Jones GJ, Smith W, Blakeley RL (2001) Characterisation of a gene cluster involved in bacterial degradation of the cyanobacterial toxin microcystin LR. Environ Toxicol 16:523–534

    Article  CAS  Google Scholar 

  17. Kato H, Tsuji K, Harada K-I (2009) Microbial degradation of cyclic peptides produced by bacteria. J Antibiot 62:181–190

    Article  CAS  Google Scholar 

  18. Stephenson SL, Kenny AJ (1987) Metabolism of neuropeptides: hydrolysis of the angiotensins, bradykinin, substance P and oxytocin by pig kidney microvillar membranes. Biochem J 241:237–247

    CAS  Google Scholar 

  19. Stephenson SL, Kenny AJ (1987) The hydrolysis of α-human atrial natriuretic peptide by pig kidney microvillar membranes is initiated by endopeptidase-24.11. Biochem J 243:183–187

    CAS  Google Scholar 

  20. Vijayaragahaven J, Tucker M, Fehrentz J-A, Isbell D, Hersh LB (1995) Reaction of neprilysin (neutral endopeptidase) and thermolysin with cyclic peptides. Arch Biochem Biophys 322:405–409

    Article  CAS  Google Scholar 

  21. Roques BP, Noble F, Dauge V, Fournie-Zaluski M-C, Beaumont A (1993) Neutral endopeptidase 24.11: structure, inhibition, and experimental and pharmacology. Pharmacol Rev 45:87–146

    CAS  Google Scholar 

  22. Matsubara H, Singer A, Sasaki R, Jukes TH (1965) Observations on the specificity of a thermostable bacterial protease “thermolysin”. Biochem Biophys Res Commun 21:242–247

    Article  CAS  Google Scholar 

  23. Matsubara H (1966) Observations on the specificity of thermolysin with synthetic peptides. Biochem Biophys Res Commun 24:427–430

    Article  CAS  Google Scholar 

  24. Harada K-I, Imanishi S, Kato H, Mizuno M, Ito E, Tsuji K (2004) Isolation of Adda from microcystin-LR by microbial degradation. Toxicon 44:107–109

    Article  CAS  Google Scholar 

  25. Adekoya OA, Sylte I (2009) The thermolysin family (M4) of enzymes: therapeutic and biotechnological potential. Chem Biol Drug Des 73:7–16

    Article  CAS  Google Scholar 

  26. Jin F, Matsushita O, Katayama S-I, Jin S, Matsushita C, Minami J, Okabe A (1996) Purification, characterization, and primary structure of Clostridium perfringens lambda-toxin, a thermolysin-like metalloprotease. Infect Immun 64:230–237

    CAS  Google Scholar 

  27. Conlan JW, Williams A, Ashworth LA (1988) Inactivation of human α-1-antitrypsin by a tissue-destructive protease of Legionella pneumophila. J Gen Microbiol 134:481–487

    CAS  Google Scholar 

  28. Mintz CS, Miller RD, Gutgsell NS, Malek T (1993) Legionella pneumophila protease inactivates interleukin-2 and cleaves CD4 on human cells. Infect Immun 61:3416–3421

    CAS  Google Scholar 

  29. Sahney NN, Summersgill JT, Ramirez JA, Miller RD (2001) Inhibition of oxidative burst and chemotaxis in human phagocytes by Legionella pneumophila zinc metalloprotease. J Med Microbiol 50:517–525

    CAS  Google Scholar 

  30. Holder IA (1985) The pathogenesis of infections owing to Pseudomonas aeruginosa using the burned mouse model: experimental studies from the Shriners Burns Institute, Cincinnati. Can J Microbiol 31:393–402

    Article  CAS  Google Scholar 

  31. Mäkinen P-L, Mäkinen K (1994) The Enterococcus faecalis extracellular metalloendopeptidase (EC 3.4.24.30; coccolysin) inactivates human endothelin at bonds involving hydrophobic amino acid residues. Biochem Biophys Res Commun 200:981–985

    Article  Google Scholar 

  32. Smith AW, Chahal B, French GL (1994) The human gastric pathogen Helicobacter pylori has a gene encoding an enzyme first classified as a mucinase in Vibrio cholera. Mol Microbiol 13:153–160

    Article  CAS  Google Scholar 

  33. Finkelstein RA, Hanne LF (1982) Purification and characterization of the soluble hemagglutinin (cholera lectin) produced by Vibrio cholerae. Infect Immun 36:1199–1208

    CAS  Google Scholar 

  34. Booth BA, Boesman-Finkelstein M, Finkelstein RA (1983) Vibrio cholerae soluble hemagglutinin/protease is a metalloenzyme. Infect Immun 42:639–644

    CAS  Google Scholar 

  35. Hersh LB, Rodgers DW (2008) Neprilysin and amyloid beta peptide degradation. Curr Alzheimer Res 5:225–231

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fumio Kondo.

Additional information

Published in the special paper collection Biomedical Mass Spectrometry with guest editors Toyofumi Nakanishi and Mitsutoshi Setou.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

ESM 1

(PDF 305 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kondo, F., Okada, S., Miyachi, A. et al. Microbial degradation of physiologically active peptides by strain B-9. Anal Bioanal Chem 403, 1783–1791 (2012). https://doi.org/10.1007/s00216-011-5635-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-5635-6

Keywords

Navigation