Skip to main content
Log in

Technological applications of chlorophyll a fluorescence for the assessment of environmental pollutants

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Chlorophyll a fluorescence has been extensively studied over the last few years. As demonstrated, this phenomenon is closely related to the state of photosystem II, which plays a leading role in the photosynthetic process, and therefore it has become a powerful tool to investigate this complex and any damage occurring in it as a result of physical or chemical stresses. This means that by using photosynthetic organisms as biological probes, one can consider chlorophyll a fluorescence as one of the techniques of choice to reveal the presence of some hazardous toxicants widely spread in the environment. Herbicides, pesticides, and heavy metals, whose concentration in water and food products is generally subject to extremely severe restrictions, are a concrete example of compounds detectable by chlorophyll a fluorescence. These dangerous substances react with the photosystem II, modifying the fluorescence emitted and giving responses which vary in a concentration-dependent manner. The possibility of performing easy, fast, and direct measurements of the fluorescence, even under light conditions, has opened new frontiers for the analysis in situ of pollutants. The aim of this review is to give an overview of the different techniques based on chlorophyll a fluorescence spectrometry, focusing in particular on those which represented the starting point for applications addressed to the assessment of toxic compounds in environmental samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Maxwell K, Johnson GN (2000) J Exp Bot 51:659–668

    Article  CAS  Google Scholar 

  2. Ke B (2001) Photosynthesis: photobiochemistry and photobiophysics. Kluwer, Dordrecht

    Google Scholar 

  3. Cho C-W, Pham TPT, Jeon Y-C (2008) Ecotoxicology 17:455–463

    Article  CAS  Google Scholar 

  4. Nguyen-Ngoc H, Durrieu C, Tran-Minh C (2009) Ecotoxicol Environ Saf 72(2):316–320

    Article  CAS  Google Scholar 

  5. Smorenburg K, Courreges-Lacoste GB, Berger M, Bushmann C, Court A, Del Bello U, Langsdorf G, Lichtenthaler HK, Sioris C, Stoll MP, Visser H (2002) Proc SPIE 4542:178–190

    Article  Google Scholar 

  6. Lavergne J, Trissl HW (1995) Biophys J 68:2474–2492

    Article  CAS  Google Scholar 

  7. Stirbet A, Govindjee, Strasser BJ, Strasser RJ (1998) J Theor Biol 193:131–151

    Article  CAS  Google Scholar 

  8. Ferreira KN, Iverson TM, Maghlaoui K, Barber J, Iwata S (2004) Science 303:1831–1838

    Article  CAS  Google Scholar 

  9. Loll B, Kern J, Saenger W, Zouni A, Biesiadka J (2005) Nature 438:1040–1044

    Article  CAS  Google Scholar 

  10. Guskov A, Kern J, Gabdulkhakov A, Broser M, Zouni A, Saenger W (2009) Nat Struct Mol Biol 16:334–342

    Article  CAS  Google Scholar 

  11. Spyridaki A, Psylinakis E, Ghanotakis DF (2006) In: Giardi MT, Piletska E (eds) Biotechnological application of photosynthetic proteins: biochips, biosensors and biodevices. Landes Bioscience, Georgetown

    Google Scholar 

  12. Renger G, Renger T (2008) Photosynth Res 98:53–80

    Article  CAS  Google Scholar 

  13. Renger G (2010) Cur Sci 98:1305–1319

    CAS  Google Scholar 

  14. Garrett RH, Grisham CM (2010) Biochemistry, 4th edn. Brooks/Cole, Boston

    Google Scholar 

  15. Krause GH, Weis E (1991) Ann Rev Plant Physiol Plant Mol Biol 42:313–349

    Article  CAS  Google Scholar 

  16. Duysens LNM, Sweers HE (1963) In: Ashida J (ed) Studies on microalgae and photosynthetic bacteria. Tokyo University Press, Tokyo, pp 353–372

    Google Scholar 

  17. Butler WL (1978) Annu Rev Plant Physiol 29:345–337

    Article  CAS  Google Scholar 

  18. Lazar D (2003) J Theor Biol 220:469–503

    Article  CAS  Google Scholar 

  19. Lazar D (2006) Funct Plant Biol 33:9–30

    Article  CAS  Google Scholar 

  20. Lazar D (1999) Biochim Biophys Acta 1412:1–28

    Article  CAS  Google Scholar 

  21. Blankenship RE (2002) Molecular mechanisms of photosynthesis. Blackwell Science, Oxford

    Book  Google Scholar 

  22. Papageorgiou G (1975) In: Govindjee (ed) Bioenergetics of photosynthesis. Academic, New York, pp 319–371

    Google Scholar 

  23. Govindjee (1995) Aust J Plant Physiol 22:131–160

    Article  CAS  Google Scholar 

  24. Boisvert S, Joly D, Carpentier R (2006) FEBS J 20:4770–4777

    Article  CAS  Google Scholar 

  25. Antal T, Rubin A (2008) Photosynth Res 96:217–226

    Article  CAS  Google Scholar 

  26. Joly D, Carpentier R (2009) Photochem Photobiol Sci 8:167–173

    Article  CAS  Google Scholar 

  27. Bukhov NG, Egorova EA, Govindachary S, Carpentier R (2004) Biochim Biophys Acta 1657:121–130

    Article  CAS  Google Scholar 

  28. Hiraki M, van Rensen JJS, Vredenberg WJ, Wakabayashi K (2003) Photosynth Res 78:35–46

    Article  CAS  Google Scholar 

  29. Dewez D, Didur O, Heroux JV, Popovic R (2008) Environ Pollut 151:93–100

    Article  CAS  Google Scholar 

  30. Chalifour A, Spear PA, Boily MH, DeBlois C, Giroux I, Dassylva N, Juneau P (2009) Toxicol Environ Chem 91:1315–1329

    Article  CAS  Google Scholar 

  31. Strasser RJ, Govindjee (1992) In: Murata N (ed) Research in photosynthesis. Kluwer, Dordrecht

    Google Scholar 

  32. Strasser RJ, Srivastava A (1995) Govindjee. Photochem Photobiol 61:32–42

    Article  CAS  Google Scholar 

  33. Schreiber U (2002) In: Kooten OV, Snel JFH (eds) Plant spectrofluorometry: applications and basic research. Rozenberg, Amsterdam

    Google Scholar 

  34. van Kooten O, Snel J (1990) Photosynth Res 25:147–150

    Article  Google Scholar 

  35. Baker NR (2008) Ann Rev Plant Biol 59:89–113

    Article  CAS  Google Scholar 

  36. Krause GH, Jahns P (2003) In: Green BR, Parson WW (eds) Light-harvesting antennas in photosynthesis. Kluwer, Dordrecht

    Google Scholar 

  37. Krause GH, Jahns P (2004) In: Papageorgiou GC, Govindjee (eds) Chlorophyll fluorescence: a signature of photosynthesis. Springer, Dordrecht

    Google Scholar 

  38. Horton P, Ruban AV (2005) J Exp Bot 56:365–373

    Article  CAS  Google Scholar 

  39. Finazzi G, Johnson GN, Dall’Osto L, Zito F, Bonente G, Bassi R, Wollman F-A (2006) Biochemistry 45:1490–1498

    Article  CAS  Google Scholar 

  40. Horton P, Wentworth M, Ruban A (2005) FEBS Lett 579:4201–4206

    Article  CAS  Google Scholar 

  41. Lambrev PH, Tsonev T, Velikova V, Georgieva K, Lambreva MD, Yordanov I, Kovács L, Garab G (2007) Photosynth Res 94:321–332

    Article  CAS  Google Scholar 

  42. Bradbury M, Baker NR (1981) Biochim Biophys Acta 635:542–551

    Article  CAS  Google Scholar 

  43. Genty B, Briantais J-M, Baker NR (1989) Biochim Biophys Acta 990:87–92

    CAS  Google Scholar 

  44. Van Kooten O, Snel J (1990) Photosynth Res 25:147–150

    Article  Google Scholar 

  45. Roháček K (2010) Photosynth Res 105:101–113

    Article  CAS  Google Scholar 

  46. Omasa K, Shimazaki K, Aiga I, Laracher W, Onoe M (1987) Plant Physiol 84:748–752

    Article  CAS  Google Scholar 

  47. Oxborough K (2004) J Exp Bot 55:1195–1205

    Article  CAS  Google Scholar 

  48. Nedbal L, Whitmarsh J (2004) In: Papageorgiou GC, Govindjee (eds) Chlorophyll fluorescence: a signature of photosynthesis. Kluwer, Dordrecht, p 1

    Google Scholar 

  49. Schreiber U, Klughammer C (2008) PAM Appl Notes 1:15–18

    Google Scholar 

  50. Barbagallo RP, Oxborough K, Pallett KE, Baker NR (2003) Plant Phys 132:485–493

    Article  CAS  Google Scholar 

  51. Chaerle L, Leinonen I, Jones HG, Van Der Straeten D (2006) J Exp Bot 58:773–784

    Article  CAS  Google Scholar 

  52. Woo NS, Badger MR, Pogson BJ (2008) Plant Methods 4:27

    Article  CAS  Google Scholar 

  53. McElrone AJ, Hamilton JG, Krafnick AJ, Aldea M, Knepp RG, DeLucia EH (2010) Environ Pollut 158:108–114

    Article  CAS  Google Scholar 

  54. Endo R, Omasa K (2004) Environ Sci Technol 38:4165–4168

    Article  CAS  Google Scholar 

  55. Holub O, Seufferheld MJ, Gohlke C, Govindjee, Heiss GJ, Clegg RM (2007) J Microsc 226:90–120

    Article  CAS  Google Scholar 

  56. Osmond B, Schwartz O, Gunning B (1999) Aust J Plant Physiol 26:717–724

    Article  CAS  Google Scholar 

  57. Buschmann C, Lichtenthaler HK (1998) J Plant Physiol 152:297–314

    CAS  Google Scholar 

  58. Buschmann C, Langsdorf G, Lichtenthaler HK (2000) Photosynthetica 38:483–491

    Article  CAS  Google Scholar 

  59. Lichtenthaler HK, Babani F, Langsdorf G (2007) Photosynth Res 93:235–244

    Article  CAS  Google Scholar 

  60. Lenk S, Chaerle L, Pfündel EE, Langsdorf G, Hagenbeek D, Lichtenthaler HK, Van Der Straeten D, Buschmann C (2007) J Exp Bot 58:807–814

    Article  CAS  Google Scholar 

  61. Buschmann C (2007) Photosynth Res 92:261–271

    Article  CAS  Google Scholar 

  62. Eullaffroy P, Vernet G (2003) Water Res 37:1983–1990

    Article  CAS  Google Scholar 

  63. Lambreva M, Pappalettera G, Boffi P, Palasciano A, Scognamiglio V, Pezzotti G, Giardi MT (2008) Luminescence 23:236–237

    Google Scholar 

  64. Gopal R, Mishra KB, Zeeshan M, Prasad SM, Joshi MM (2002) Curr Sci 83:880–884

    CAS  Google Scholar 

  65. Buschmann C, Schweiger J, Lichtenthaler HK, Richter P (1996) J Plant Physiol 148:548–554

    CAS  Google Scholar 

  66. Saito Y, Saito R, Kawahara TD, Nomura A, Takeda S (2000) For Ecol Manage 128:129–137

    Article  Google Scholar 

  67. Richards JT, Schuerger C, Capelle G, Giukema JA (2003) Remote Sens Environ 84:323–341

    Article  Google Scholar 

  68. Ndao AS, Konté A, Biaye M, Faye ME, Faye NAB, Wangué (2005) J Fluoresc 15:123–129

    Article  CAS  Google Scholar 

  69. Kolber ZS, Klimov D, Ananyev G, Rascher U, Berry JA, Osmond (2005) Photosynth Res 84:121–129

    Article  CAS  Google Scholar 

  70. Pieruschka R, Kolber ZS (2008) Energy Sun 24:1539–1544

    Google Scholar 

  71. Pieruschka R, Klimov D, Kolber ZS, Berry JA (2010) Funct Plant Biol 37:395–402

    Article  Google Scholar 

  72. Krumov A, Nikolova A, Vassilev V, Vassilev N (2008) Adv Space Res 41:1870–1875

    Article  Google Scholar 

  73. Meroni M, Rossini M, Guanter L, Alonso L, Rascher U, Colombo R, Moreno J (2009) Remote Sens Environ 113:2037–2051

    Article  Google Scholar 

  74. Strasser RJ, Srivastava A, Tsimilli-Michael M (2000) In: Yunus M, Pathre U, Mohanty P (eds) Probing photosynthesis: mechanism, regulation and adaptation. Taylor and Francis, Abingdon

    Google Scholar 

  75. Prange RK (1986) Am Potato J 63:325–333

    Article  Google Scholar 

  76. Merz D, Geyer M, Moss DA, Ache HJ (1996) Fresenius J Anal Chem 354:299–305

    CAS  Google Scholar 

  77. Lichtenthaler HK, Rinderle U (1988) Crit Rev Anal Chem 19:29–85

    Google Scholar 

  78. Devi SR, Prasad MNV (1996) Photosynthetica 32:117–127

    CAS  Google Scholar 

  79. Roshchina VV, Melinkova EV (1996) Allelopathy J 3:51–58

    Google Scholar 

  80. Buonasera K, Pezzotti G, Scognamiglio V, Tibuzzi A, Giardi MT (2010) J Agric Food Chem 58:5982–5990

    Article  CAS  Google Scholar 

  81. Giardi MT, Masojidek J, Godde D (1997) Plant Physiol 101:635–642

    Article  CAS  Google Scholar 

  82. Rashid A, Camm EL, Ekramoddoullah KM (1994) FEBS Lett 350:296–298

    Article  CAS  Google Scholar 

  83. Chugh LK, Sawhney SK (1999) Plant Physiol Biochem 37:297–303

    Article  CAS  Google Scholar 

  84. Van Assche F, Clijsters H (1990) Plant Cell Environ 13:195–206

    Article  Google Scholar 

  85. Küpper H, Küpper F, Spiller M (1996) J Exp Bot 47(295):259–266

    Article  Google Scholar 

  86. Küpper H, Küpper F, Spiller M (1998) Photosynth Res 58(2):123–133

    Article  Google Scholar 

  87. Tuba Z, Saxena DK, Srivastava K, Singh S, Czobel S, Kalaji HM (2010) Curr Sci 98:1505–1508

    CAS  Google Scholar 

  88. Grunwald B, Kühl M (2004) Ophelia 58:79–89

    Google Scholar 

  89. Bro E, Meyer S, Genty B (1996) Plant Cell Environ 19:1349–1358

    Article  CAS  Google Scholar 

  90. Oxborough K, Baker NR (1997) Photosynth Res 54:135–142

    Article  CAS  Google Scholar 

  91. Meng Q, Siebke K, Lippert P, Baur B, Mukherjee U, Weis E (2001) New Phytol 151:585–595

    Article  CAS  Google Scholar 

  92. Wingler A, Brownhill E, Portau (2005) J Exp Bot 56:2897–2905

    Article  CAS  Google Scholar 

  93. Meyer S, Genty B (1999) Planta 210:126–131

    Article  CAS  Google Scholar 

  94. Nejad AR, Harbinson J, van Meeteren U (2006) J Exp Bot 57:3669–3678

    Article  CAS  Google Scholar 

  95. West JD, Peak D, Peterson JQ, Mott KA (2005) Plant Cell Environ 28:633–641

    Article  Google Scholar 

  96. Hogewoning SW, Harbinson J (2007) J Exp Bot 58:453–463

    Article  CAS  Google Scholar 

  97. Leipner J, Oxborough K, Baker NR (2001) J Exp Bot 52:1689–1696

    Article  CAS  Google Scholar 

  98. Quilliam RS, Swarbrick PJ, Scholes JD, Rolfe SA (2006) J Exp Bot 57:55–69

    Article  CAS  Google Scholar 

  99. Berger S, Benediktyová Z, Matous K, Bonfig K, Mueller MJ, Nedbal L, Roitsch T (2007) J Exp Bot 58:797–806

    Article  CAS  Google Scholar 

  100. Bonfig KB, Schreiber U, Gabler A, Roitsch T, Berger S (2006) Planta 225:1–12

    Article  CAS  Google Scholar 

  101. Scharte J, Schon H, Weis E (2005) Plant Cell Environ 28:1421–1435

    Article  CAS  Google Scholar 

  102. Swarbrick PJ, Schulze-Lefert P, Scholes JD (2006) Plant Cell Environ 29:1061–1076

    Article  CAS  Google Scholar 

  103. Schreiber U, Quayle P, Schmidt S, Escher BI, Mueller JF (2007) Biosens Bioelectron 22:2554–2563

    Article  CAS  Google Scholar 

  104. Muller R, Schreiber U, Escher BI, Quayle P, Bengtson Nash SM, Mueller JF (2008) Sci Total Environ 401:51–59

    Article  CAS  Google Scholar 

  105. Agati G, Mazzinghi P, Fusi F, Ambrosini I (1995) J Plant Physiol 145:228–238

    CAS  Google Scholar 

  106. Lichtenthaler HK, Lang M, Sowinska M, Heisel F, Miehe JA (1996) J Plant Physiol 148:599–612

    CAS  Google Scholar 

  107. Gensemer RW, Ren L, Day KE, Solomon KR, Greenberg BM (1996) In: Environmental toxicology and risk assessment: biomarker and risk assessment, vol 5. American Society for Testing and Materials, West Conshohocken, pp 163–176

  108. Clark LC, Lyons C (1962) Ann N Y Acad Sci 102:29–45

    Article  CAS  Google Scholar 

  109. Thevenot DR, Toth K, Durst RA, Wilson GS (1999) Pure Appl Chem 71:2333–2348

    Article  CAS  Google Scholar 

  110. Marty J-L, Garcia D, Rouillon R (1995) Trends Anal Chem 14:329–333

    CAS  Google Scholar 

  111. Naessens M, Leclerc JC, Tran-Minh C (2000) Ecotoxicol Environ Saf 46:181–185

    Article  CAS  Google Scholar 

  112. Maly J, Klem K, Lukavska A, Masojidek J (2005) J Environ Qual 34:1780–1788

    Article  CAS  Google Scholar 

  113. Giardi MT, Guzzella L, Euzet P, Rouillon R, Esposito D (2005) Environ Sci Technol 39:5378–5384

    Article  CAS  Google Scholar 

  114. Breton F, Euzet P, Piletsky SA, Giardi MT, Rouillon R (2006) Anal Chim Acta 569:50–57

    Article  CAS  Google Scholar 

  115. Tibuzzi A, Rea G, Pezzotti G, Esposito D, Johanningmeier U, Giardi MT (2007) J Phys Condens Matter 19:395006–395018

    Article  CAS  Google Scholar 

  116. Rea G, Polticelli F, Antonacci A, Scognamiglio V, Katiyar P, Kulkarni SA, Johanningmeier U, Giardi MT (2009) Protein Sci 18(10):2139–2151

    Article  CAS  Google Scholar 

  117. Turner N, Horsburgh A, Paton G, Killham K, Meharg A, Primrose S, Strachan N (2001) Environ Toxicol Chem 20:2456–2461

    CAS  Google Scholar 

  118. Podola B, Nowack E, Melkonian M (2004) Biosens Bioelectron 19:1253–1260

    Article  CAS  Google Scholar 

  119. Podola B, Melkonian M (2005) J Appl Phycol 17:261–271

    Article  CAS  Google Scholar 

  120. Scheller FW, Wollenberger U, Warsinke A, Lisdat F (2001) Curr Opin Biotechnol 12:35–40

    Article  CAS  Google Scholar 

  121. Carpentier R (2002) In: Pessarakli M (ed) Dekker, New York, pp 763–772

  122. Campas M, Carpentier R, Rouillon R (2008) Biotechnol Adv 26:370–378

    Article  CAS  Google Scholar 

  123. Rouillon R, Boucher N, Gingras Y, Carpentier R (2000) J Chem Technol Biotechnol 75:1003–1007

    Article  CAS  Google Scholar 

  124. Saran R, Basu Baul TS, Srinivas P, Khating DT (1992) Anal Lett 25:1545–1547

    CAS  Google Scholar 

  125. Rasmussen LD, Sorensen SJ, Turner RR, Barkay T (2000) Soil Biol Biochem 32:639–646

    Article  CAS  Google Scholar 

  126. Ivask A, Virta M, Kahru A (2002) Soil Biol Biochem 34:1439–1447

    Article  CAS  Google Scholar 

  127. Petanen T, Romantschuk M (2002) Anal Chim Acta 456:55–61

    Article  CAS  Google Scholar 

  128. Liao VH-C, Chien M-T, Tseng Y-Y, Ou K-L (2006) Environ Pollut 142:17–23

    Article  CAS  Google Scholar 

  129. Ehlert B, Hincha D (2008) Plant Methods 4:12

    Article  CAS  Google Scholar 

  130. Muller-Moule P, Golan T, Niyogi KK (2004) Plant Physiol 134:1163–1172

    Article  CAS  Google Scholar 

  131. Baker NR, Rosenqvist E (2004) J Exp Bot 55:1607–1621

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the EU project SENSBIOSYN (FP7-SME-2008-1). K.B. is deeply grateful to Dr. Eng. Gianni Pezzotti for his precious support and continuous inspiration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Buonasera.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buonasera, K., Lambreva, M., Rea, G. et al. Technological applications of chlorophyll a fluorescence for the assessment of environmental pollutants. Anal Bioanal Chem 401, 1139–1151 (2011). https://doi.org/10.1007/s00216-011-5166-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-5166-1

Keywords

Navigation