Skip to main content
Log in

The trace analysis of microorganisms in real samples by combination of a filtration microcartridge and capillary isoelectric focusing

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Trace analysis of microorganisms in real biological samples needs very sensitive methods for their detection. Most procedures for detecting and quantifying pathogens require a sample preparation step including concentrating microorganisms from large sample volumes with high and reproducible efficiency. Electromigration techniques have great potential to include the preconcentration, separation, and detection of whole cells and therefore they can rapidly indicate the presence of pathogens. The preconcentration and separation of microorganisms from real suspensions utilising a combination of filtration and capillary isoelectric focusing was developed and the possibility for its application to real samples was verified. For our experiments, spores of Monilinia species and of Penicillium expansum were selected as model bioparticles, as they cause major losses in agrosystems. The isoelectric points of the spores of M. laxa, M. fructigena, M. fruticola, and P. expansum were determined and the method was verified using real samples taken directly from infected apples. The coupling of a filtration cartridge with a separation capillary can improve the detection limit of isoelectric focusing with UV detection by at least 4 orders of magnitude. Spores of M. fructigena and of M. laxa in numbers of hundreds of particles per milliliter were detected on a visually noninfected apple surface which was cross-contaminated during handling and storage. The efficiency of preconcentration and a preliminary identification was verified by the phenotyping technique after cultivation of the spores sampled from the apple surface.

The pre-concentration and separation of spores of Monilinia species and of Penicillium expansum from the real suspensions including combination of filtration and capillary isoelectric focusing were developed and the possibility of their application to real samples was verified. The coupling of the filtration cartridge with the separation capillary can improve the detection limit of the isoelectric focusing with the UV-detection by at least four orders of magnitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Arai F, Ichikawa A, Ogawa M, Fukuda T, Horio K, Itoigawa K (2001) Electrophoresis 22:283–288

    Article  CAS  Google Scholar 

  2. Fenselau C, Pribil P (2006) In: Wilkins CL, Lay JO (eds) Identification of microorganisms by mass spectrometry. Totowa, Wiley

    Google Scholar 

  3. O’Connell S, Lawson RD, Watwood ME, Lehman RM (2000) J Microbiol Methods 40:213–220

    Article  Google Scholar 

  4. Alvarez AM (2004) Annu Rev Phytopathol 42:339–366

    Article  CAS  Google Scholar 

  5. Dawyndt P, Vancanneyt M, Snauwaert C, De Baets B, De Meyer H, Swings J (2006) J Microbiol Methods 66:410–433

    Article  CAS  Google Scholar 

  6. Lantz AW, Bisha B, Tong M-Y, Nelson RE, Brehm-Stecher BF, Armstrong DW (2010) Electrophoresis 31:2849–2853

    Article  CAS  Google Scholar 

  7. Boonham N, Glover R, Tomlinson J, Mumford R (2008) Eur J Plant Pathol 121:355–363

    Article  CAS  Google Scholar 

  8. Wahl KL, Wunschel SC, Jarman KH, Valentine NB, Petersen CE, Kingsley KA, Saenz AJ (2002) Anal Chem 74:6191–6199

    Article  CAS  Google Scholar 

  9. Parisi D, Magliulo M, Nanni P, Casale M, Forina M, Roda A (2008) Anal Bioanal Chem 391:2127–2134

    Article  CAS  Google Scholar 

  10. Rotem S, Raz N, Kashi Y, Mor A (2010) Appl Environ Microbiol 76:3301–3307

    Article  CAS  Google Scholar 

  11. Mach AJ, Carlo DD (2010) Biotechnol Bioeng 107:302–311

    Article  CAS  Google Scholar 

  12. Berry ED, Siragusa GR (1997) Appl Environ Microbiol 63:4069–4074

    CAS  Google Scholar 

  13. Košťál V, Arriaga EA (2008) Electrophoresis 29:2578–2586

    Article  Google Scholar 

  14. Horká M, Růžička F, Holá V, Šlais K (2009) Electrophoresis 30:2134–2141

    Article  Google Scholar 

  15. Liu Z, Wu SS, Pawliszyn J (2007) J Chromatogr A 1140:213–218

    Article  CAS  Google Scholar 

  16. Lantz AW, Bao Y, Armstrong DW (2007) Anal Chem 79:1720–1724

    Article  CAS  Google Scholar 

  17. Horká M, Růžička F, Horký J, Holá V, Šlais K (2006) Anal Chem 78:8438–8444

    Article  Google Scholar 

  18. Dolník V (2006) Electrophoresis 27:126–141

    Article  Google Scholar 

  19. Jung B, Bharadwaj R, Santiago JG (2006) Anal Chem 78:2319–2327

    Article  CAS  Google Scholar 

  20. Gebauer P, Bocek P (2002) Electrophoresis 23:3858–3864

    Article  CAS  Google Scholar 

  21. Wang J, Zhang Y, Mohamadi MR, Kaji N, Tokeshi M, Baba Y (2009) Electrophoresis 30:3250–3256

    Article  CAS  Google Scholar 

  22. Lichtenberg J, Verpoorte E, De Rooij NF (2001) Electrophoresis 22:258–271

    Article  CAS  Google Scholar 

  23. Burgi DS, Chien RL (1991) Anal Chem 63:2042–2047

    Article  CAS  Google Scholar 

  24. Quirino JP, Terabe S (1998) Science 282:465–468

    Article  CAS  Google Scholar 

  25. Britz-McKibbin P, Ichihashi T, Tsubota K, Chen DDY, Terabe S (2003) J Chromatogr A 1013:65–76

    Article  CAS  Google Scholar 

  26. Tempels FWA, Underberg WJM, Somsen GW, de Jong GJ (2008) Electrophoresis 29:108–128

    Article  CAS  Google Scholar 

  27. Puig P, Borrull F, Calull M, Aguilar C (2008) Anal Chim Acta 616:1–18

    Article  CAS  Google Scholar 

  28. Ramautar R, Sosen GW, de Jong GJ (2010) Electrophoresis 31:44–54

    Article  CAS  Google Scholar 

  29. Petr J, Jiang Ch, Sevcik J, Tesarova E, Armstrong DW (2009) Electrophoresis 30:3870–3876

    Article  CAS  Google Scholar 

  30. Shen Y, Berger SJ, Smith RD (2000) Anal Chem 72:4603–4607

    Article  CAS  Google Scholar 

  31. Yu L, Li SFY (2007) J Chromatogr A 1161:308–313

    Article  CAS  Google Scholar 

  32. Pfetsch A, Welsch T (1997) Fresenius J Anal Chem 359:198–201

    Article  CAS  Google Scholar 

  33. Kutter JP, Jacobson SC, Ramsey JM (2000) J Microcolumn Sep 12:93–97

    Article  CAS  Google Scholar 

  34. Munoz Z, Moret A, Bech J (2008) Agrociencia 42:119–128

    Google Scholar 

  35. van Brouwershaven IR, Bruil ML, van Leeuwen GCM, Kox LFF (2009) Plant Pathol 59:548–555

    Article  Google Scholar 

  36. Okull DO, Laborde LF (2004) J Food Sci 69:23–27

    Article  Google Scholar 

  37. Hirokawa T, Nishino M, Aoki N, Sawamoto YKTY, Akiyama J-I (1983) J Chromatogr A 271:D1–D106

    Article  CAS  Google Scholar 

  38. Acevedo F (1991) J Chromatogr A 545:391–396

    Article  CAS  Google Scholar 

  39. Horká M, Růžička F, Holá V, Šlais K (2006) Anal Bioanal Chem 385:840–846

    Article  Google Scholar 

  40. Šťastná M, Trávníček M, Šlais K (2005) Electrophoresis 26:53–59

    Article  Google Scholar 

  41. Šťastná M, Šlais K (2003) J Chromatogr A 1008:193–203

    Article  Google Scholar 

  42. Horká M, Willimann T, Blum M, Nordig P, Friedl Z, Šlais K (2001) J Chromatogr A 916:65–71

    Article  Google Scholar 

  43. Horká M, Růžička F, Horký J, Holá V, Šlais K (2006) J Chromatogr B 841:152–159

    Article  Google Scholar 

  44. Horká M, Růžička F, Kubesová A, Holá V, Šlais K (2009) Anal Chem 81:3997–4004

    Article  Google Scholar 

  45. Doyle RJ (2000) Microbes Infect 2:391–400

    Article  CAS  Google Scholar 

  46. Rijnaarts HHM, Norde W, Lyklema J, Zehnder AJB (1995) Colloids Surf B Biointerfaces 4:191–197

    Article  CAS  Google Scholar 

  47. Willetts HJ, Byrde RJW, Fielding AH, Wong AL (1977) J Gen Microbiol 103:77–83

    CAS  Google Scholar 

  48. Šťastná M, Šlais K (2008) Electrophoresis 29:4503–4507

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Grant Agency of the Academy of Sciences of the Czech Republic (no. IAAX00310701) and by the institutional research plan AVO Z40310501.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie Horká.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Horká, M., Horký, J., Kubesová, A. et al. The trace analysis of microorganisms in real samples by combination of a filtration microcartridge and capillary isoelectric focusing. Anal Bioanal Chem 400, 3133–3140 (2011). https://doi.org/10.1007/s00216-011-4975-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-4975-6

Keywords

Navigation