Skip to main content
Log in

Coupled thermogravimetry, mass spectrometry, and infrared spectroscopy for quantification of surface functionality on single-walled carbon nanotubes

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

We have successfully applied coupled thermogravimetry, mass spectrometry, and infrared spectroscopy to the quantification of surface functional groups on single-walled carbon nanotubes. A high-purity single-walled carbon nanotube sample was subjected to a rapid functionalization reaction that attached butyric acid moieties to the nanotube sidewalls. This sample was then subjected to thermal analysis under inert desorption conditions. Resultant infrared and mass spectrometric data were easily utilized to identify the desorption of the butyric acid groups across a narrow temperature range and we were able to calculate the degree of substitution of the attached acid groups within the nanotube backbone as 1.7 carbon atoms per hundred, in very good agreement with independent analytical measurements made by inductively coupled plasma optical emission spectrometry (ICP-OES). The thermal analysis technique was also able to discern the presence of secondary functional moieties on the nanotube samples that were not accessible by ICP-OES. This work demonstrates the potential of this technique for assessing the presence of multiple and diverse functional addends on the nanotube sidewalls, beyond just the principal groups targeted by the specific functionalization reaction.

3D contour map of the FTIR spectra of the species desorbed from the GAP-functionalized SWCNT sample as a function of temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Baughman RH, Zakhidov AA, de Heer WA (2002) Science 297:787–792

    Article  CAS  Google Scholar 

  2. Terrones M (2003) Annu Rev Mater Res 33:419–501

    Article  CAS  Google Scholar 

  3. Tasis D, Tagmatarchis N, Bianco A, Prato M (2006) Chem Rev 106:1105–1136

    Article  CAS  Google Scholar 

  4. Hirsch A, Vostrowski O (2005) Top Curr Chem 245:193–237

    CAS  Google Scholar 

  5. Martínez-Rubí Y, Guan J, Lin S, Scriver C, Sturgeon RE, Simard B (2007) Chem Commun 48:5146–5148

    Article  Google Scholar 

  6. Hu H, Bhowmik P, Zhao B, Hamon MA, Itkis ME, Haddon RC (2001) Chem Phys Lett 345:25–28

    Article  CAS  Google Scholar 

  7. Ogrin D, Chattopadhyay J, Sadana AK, Billups WE, Barron AR (2006) J Am Chem Soc 128:11322–11323

    Article  CAS  Google Scholar 

  8. Zeng L, Alemany LB, Edwards CL, Barron AR (2008) Nano Res 1:72–88

    Article  CAS  Google Scholar 

  9. Jung A, Graupner R, Ley L, Hirsch A (2006) Phys Stat Sol 243:3217–3220

    Article  CAS  Google Scholar 

  10. Guan J, Martínez-Rubí Y, Dénommée S, Ruth D, Kingston CT, Daroszewska M, Barnes M, Simard B (2009) Nanotechnology 20:245701

    Article  Google Scholar 

  11. Dementev N, Feng X, Borguet E (2009) Langmuir doi:10.1021/la803947q

  12. Zhang L, Zhang J, Schmandt N, Cratty J, Khabashesku VN, Kelly KF, Barron AR (2005) Chem Commun 43:5429–5431

    Article  Google Scholar 

  13. Hong SY, Tobias G, Ballesteros B, Oualid FE, Errey JC, Doores KJ, Kirkland AI, Nellist PD, Green MLH, Davis BG (2007) J Am Chem Soc 129:10966–10967

    Article  CAS  Google Scholar 

  14. Ramesh S, Brinson B, Johnson MP, Gu Z, Saini RK, Willis P, Mariott T, Billups WE, Margrave JL, Hauge RH, Smalley RE (2003) J Phys Chem B 107:1360–1365

    Article  CAS  Google Scholar 

  15. Itkis ME, Perea DE, Jung R, Niyogi S, Haddon RC (2005) J Amer Chem Soc 127:3439–3448

    Article  CAS  Google Scholar 

  16. Arepalli S, Nikolaev P, Gorelik O, Hadjiev VG, Holmes W, Files B, Yowell L (2004) Carbon 42:1783–1791

    Article  CAS  Google Scholar 

  17. Trigueiro JPC, Silva GG, Lavall RL, Furtado CA, Oliveira S, Ferlauto AS, Lacerda RG, Ladeira LO, Liu JW, Frost RL, George GA (2007) J Nanosci Nanotech 7:3477–3486

    Article  CAS  Google Scholar 

  18. Gozzi D, Latini A, Lazzarini L (2008) Chem Mater 20:4126–4134

    Article  CAS  Google Scholar 

  19. Nayak RR, Lee KY, Shanmugharaj AM, Ryu SH (2007) Eur Polym J 43:4916–4923

    Article  CAS  Google Scholar 

  20. Montesa I, Muñoz E, Benito AM, Maser WK, Martinez MT (2007) J Nanosci Nanotech 7:3473–3476

    Article  CAS  Google Scholar 

  21. Syrgiannis Z, Hauke F, Röhrl J, Hundhausen M, Graupner R, Elemes Y, Hirsch A (2008) Eur J Org Chem 15:2544–2550

    Article  Google Scholar 

  22. Zhang L, Ni QQ, Fu Y, Natsuki T (2009) Appl Surf Sci 255:7095–7099

    Article  CAS  Google Scholar 

  23. Zhang W, Sprafke JK, Ma M, Tsiu EY, Sydlik SA, Rutledge GC, Swager TM (2009) J Amer Chem Soc 131:8446–8454

    Article  CAS  Google Scholar 

  24. Kingston CT, Jakubek ZJ, Dénommée S, Simard B (2004) Carbon 42:1657–1664

    Article  CAS  Google Scholar 

  25. Kingston CT, Simard B (2006) J Nanosci Nanotech 6:1–8

    Article  Google Scholar 

  26. Pénicaud A, Poulin P, Derré A, Anglaret E, Petit P (2005) J Amer Chem Soc 127:8–9

    Article  Google Scholar 

  27. Dillon AC, Yudasaka M, Dresselhaus MS (2004) J Nanosci Nanotech 4:691–703

    Article  CAS  Google Scholar 

  28. Rao KN (1985) Molecular spectroscopy: modern research, vol III. Academic, Orlando

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher T. Kingston.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 160 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kingston, C.T., Martínez-Rubí, Y., Guan, J. et al. Coupled thermogravimetry, mass spectrometry, and infrared spectroscopy for quantification of surface functionality on single-walled carbon nanotubes. Anal Bioanal Chem 396, 1037–1044 (2010). https://doi.org/10.1007/s00216-009-3205-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-009-3205-y

Keywords

Navigation