Skip to main content
Log in

Rapid, sensitive and simultaneous determination of fluorescence-labeled designated substances controlled by the Pharmaceutical Affairs Law in Japan by ultra-performance liquid chromatography coupled with electrospray-ionization time-of-flight mass spectrometry

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A simultaneous determination method based on ultra-performance liquid chromatography (UPLC) with fluorescence (FL) detection and electrospray-ionization time-of-flight mass spectrometry (ESI-TOF-MS) was developed for 16 “designated substances” (Shitei-Yakubutsu) controlled by the Pharmaceutical Affairs Law in Japan. These substances were first labeled with 4-(N,N-dimethylaminosulfonyl)-7-fluoro-2,1,3-benzoxadiazole at 60 °C for 2 h in 0.1 M borax (pH 9.3). The resulting fluorophores were well separated by reversed-phase chromatography using an Acquity UPLC™ BEH C18 column (1.7 μm, 100 mm × 2.1 mm i.d.) by isocratic elution with a mixture of water and acetonitrile–methanol (20:80) containing 0.1% formic acid. The separated derivatives were sensitively detected by both FL and TOF-MS. However, the determination of several designated substances by FL detection showed interference from endogenous substances in biological samples. Therefore, the determination in real samples was carried out by a combination of UPLC separation and ESI-TOF-MS detection. The structures of the designated substances were identified from the protonated-molecular ions [M+H]+ obtained from the TOF-MS measurement. The calibration curves obtained from the peak area ratios of the internal standard (I.S.), i.e., 3-phenyl-1-propylamine, and the designated substances versus the injection amounts showed good linearity. The limits of detection \( \left( {{\text{S/N}} = 3} \right) \) and the limits of quantification \( \left( {{\text{S/N}} = 10} \right) \) in 0.1 mL of human plasma and urine for the present method were 0.30–150 pmol and 1.0–500 pmol, respectively. Good accuracy and precision (according to intraday and interday assays) were also obtained with the present procedure. This method was applied to analyses of human plasma, urine and real products.

Structures of designated substances tested

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Jacob III P, Shulgin AT (1994) Structure–activity relationships of the classic hallucinogens and their analogs. In: Lin GC, Glennon RA (eds) Hallucinogens: an update (NIDA Research Monograph 146). National Institute on Drug Abuse, Rockville, MD, pp. 74–91

  2. Nicholos DE (1981) J Pharm Sci 70:839–849

    Article  Google Scholar 

  3. Glennon RA, Rosecrans JA (1982) Neurosci Biobehav Rev 6:489–497

    Article  CAS  Google Scholar 

  4. McKenna DJ, Towers GHN (1984) J Psychoact Drugs 16:347–358

    CAS  Google Scholar 

  5. Spoerke DG, Hall AH (1990) Emerg Med Clin North Am 8:579–593

    CAS  Google Scholar 

  6. Jacob P III, Shulgin AT (1994) NIDA Res Monogr 146:74–91

    Google Scholar 

  7. Marek GJ, Aghajanian GK (1998) Drug Alcohol Depend 51:189–198

    Article  CAS  Google Scholar 

  8. Kanai K, Takekawa K, Kumamoto T, Ishikawa T, Ohmori T (2008) Forensic Toxicol 26:6–12

    Article  CAS  Google Scholar 

  9. Buchanan JF, Brown CR (1988) Med Toxicol Adverse Drug Exp 3:1–17

    CAS  Google Scholar 

  10. Pichini S, Pujadas M, Marchei E, Pellegrini M, Fiz J, Pacifici R, Zuccaro P, Farre M, Torre R (2008) J Pharm Biomed Anal 47:335–342

    Article  CAS  Google Scholar 

  11. Tancer ME, Johanson CE (2001) Drug Alcohol Depend 65:97–101

    Article  CAS  Google Scholar 

  12. Fantegrossi WE, Harrington AW, Kiessel CL, Eckler JR, Rabin RA, Winter JC, Coop A, Rice KC, Woods JH (2006) Pharmacol Biochem Behav 83:122–129

    Article  CAS  Google Scholar 

  13. Tanaka E, Kamata T, Katagi M, Tsuchihashi H, Honda K (2006) Forensic Sci Int 163:152–154

    Article  CAS  Google Scholar 

  14. Alatrash G, Majhail NS, Pile JC (2006) Mayo Clin Proc 81:550–551

    Article  Google Scholar 

  15. Wilson JM, McGeorge F, Smolinske S, Meatherall R (2005) Forensic Sci Int 148:31–36

    Article  CAS  Google Scholar 

  16. Meatherall R, Sharma P (2003) J Anal Toxicol 27:313–317

    CAS  Google Scholar 

  17. Curtis B, Kemp P, Harty L, Choi C, Christensen D (2003) J Anal Toxicol 27:493–498

    CAS  Google Scholar 

  18. Klaassen T, Ho Pian KL, Westenberg HG, den Boer JA, van Praag HM (1998) Psychiatry Res 79:207–212

    Article  CAS  Google Scholar 

  19. Smolinske S, Rastogi R, Schenkel RS (2003) J Toxicol Clin Toxicol 41:641

    Article  Google Scholar 

  20. Balikova M (2005) Forensic Sci Int 153:85–91

    Article  CAS  Google Scholar 

  21. Nakashima K (2006) Chemistry 61(12):12–16

    CAS  Google Scholar 

  22. Kikura-Hanajiri R, Kawamura M, Uchiyama N, Ogata J, Kamakura H, Saisho K, Goda Y (2008) Yakugaku Zasshi 128:971–979

    Article  CAS  Google Scholar 

  23. Uchiyama N, Kawamura M, Kamakura H, Kikura-Hanajiri R, Goda Y (2008) Yakugaku Zasshi 128:981–987

    Article  CAS  Google Scholar 

  24. Uchiyama N, Kikura-Hanajiri R, Kawahara N, Goda Y (2008) Yakugaku Zasshi 128:1499–1505

    Article  CAS  Google Scholar 

  25. Doi K, Miyazawa M, Kojima T, Fujii H (2006) Yakugaku Zasshi 126:815–823

    Article  CAS  Google Scholar 

  26. Frison G, Tedeschi L, Favretto D, Reheman A, Ferrara SD (2005) Rapid Commun Mass Spectrom 19:919–927

    Article  CAS  Google Scholar 

  27. Staack RF, Maurer HH (2005) Curr Drug Metab 6:259–274

    Article  CAS  Google Scholar 

  28. Matsumoto T, Kikura-Hanajiri R, Kamakura H, Kuwahara N, Goda Y (2005) J Health Sci 52:805–810

    Article  Google Scholar 

  29. Chiu Y-C, Lin C-H, Chou S-H, Liu J-T (2004) J Chromatogr B 811:127–133

    CAS  Google Scholar 

  30. Theobald DS, Maurer HH (2004) J Chromatogr B 842:76–90

    Article  Google Scholar 

  31. Theobald DS, Staack RF, Puetz M, Maurer HH (2005) J Mass Spectrom 40:1157–1172

    Article  CAS  Google Scholar 

  32. Lin L-C, Lin C-H, Liu J-T, Chou S-H (2003) J Chromatogr B 798:241–247

    Article  CAS  Google Scholar 

  33. Kikura-Hanajiri R, Hayashi M, Saisho K, Goda Y (2005) J Chromatogr B 825:29–37

    Article  CAS  Google Scholar 

  34. Leung GNW, Leung DKK, Wan TSN, Wong CHF (2007) J Chromatogr A 1156:271–279

    Article  CAS  Google Scholar 

  35. Gottardo R, Bortolotti F, De Paoil G, Pascali JP (2007) J Chromatogr A 1159:185–189

    Article  CAS  Google Scholar 

  36. Elliott S, Wowe P, Symonds A (2004) Forensic Sci Int 139:183–190

    Article  CAS  Google Scholar 

  37. Nakashima K (2005) J Health Sci 51:272–277

    Article  CAS  Google Scholar 

  38. Macedo C, Branco PS, Ferreira LM, Lobo AM, Capela JP, Fernandes E, Bastos ML, Carvalho F (2007) J Health Sci 53:31–42

    Article  CAS  Google Scholar 

  39. Nishida M, Yashiki M, Namera A, Kimura K (2006) J Chromatogr B 842:106–110

    Article  CAS  Google Scholar 

  40. Jimenez C, De la Torre R, Ventura M, Segura J, Ventura R (2006) J Chromatogr B 843:84–93

    Article  CAS  Google Scholar 

  41. Kumihashi M, Ameno K, Shibayama T, Suga K, Miyauchi H, Jamal M, Wang W, Uekita I, Ijiri I (2007) J Chromatogr B 845:180–183

    Article  CAS  Google Scholar 

  42. Carrera V, Sabater E, Vilanova E, Sogorb MA (2007) J Chromatogr B 847:88–94

    Article  CAS  Google Scholar 

  43. Trachsel D (2003) Helv Chim Acta 86:2754–2759

    Article  CAS  Google Scholar 

  44. Appollonio LG, Whittall IR, Pianca DJ, Kyd JM, Maher WA (2006) Rapid Commun Mass Spectrom 20:2259–2264

    Article  Google Scholar 

  45. Appollonio LG, Pianca DJ, Whittall IR, Maher WA, Kyd JM (2006) J Chromatogr B 836:111–115

    Article  Google Scholar 

  46. Min JZ, Shimizu Y, Toyo’oka T, Inagaki S, Kikura-Hanajiri R, Goda Y (2008) J Chromatogr B 873:187–194

    Article  CAS  Google Scholar 

  47. Nakamura S, Wada M, Crabtree BL, Reeves PM, Montgomery JH, Byrd HJ, Harada S, Kuroda N, Nakashima K (2007) Anal Bioanal Chem 387:1983–1990

    Article  CAS  Google Scholar 

  48. Wu N, Collins DC, Lippert JA, Xiang Y, Lee ML (2000) J Microcol Sep 12:462–469

    Article  CAS  Google Scholar 

  49. Wu Y-H, Lin K-L, Chen S-C, Chang Y-Z (2008) Rapid Commun Mass Spectrom 22:887–897

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The present research was supported in part by a Health Sciences Research Grant from the Ministry of Health Labor and Welfare in Japan, and a Research Grant from the Ministry of Education, Science, Sports and Culture of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshimasa Toyo’oka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Min, J.Z., Hatanaka, S., Toyo’oka, T. et al. Rapid, sensitive and simultaneous determination of fluorescence-labeled designated substances controlled by the Pharmaceutical Affairs Law in Japan by ultra-performance liquid chromatography coupled with electrospray-ionization time-of-flight mass spectrometry. Anal Bioanal Chem 395, 1411–1422 (2009). https://doi.org/10.1007/s00216-009-3046-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-009-3046-8

Keywords

Navigation