Skip to main content
Log in

Vibrational spectroscopy standoff detection of explosives

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Standoff infrared and Raman spectroscopy (SIRS and SRS) detection systems were designed from commercial instrumentation and successfully tested in remote detection of high explosives (HE). The SIRS system was configured by coupling a Fourier-transform infrared interferometer to a gold mirror and detector. The SRS instrument was built by fiber coupling a spectrograph to a reflective telescope. HE samples were detected on stainless steel surfaces as thin films (2–30 μg/cm2) for SIRS experiments and as particles (3–85 mg) for SRS measurements. Nitroaromatic HEs: TNT, DNT, RDX, C4, and Semtex-H and TATP cyclic peroxide homemade explosive were used as targets. For the SIRS experiments, samples were placed at increasing distances and an infrared beam was reflected from the stainless steel surfaces coated with the target chemicals at an angle of ∼180° from surface normal. Stainless steel plates containing TNT and RDX were first characterized for coverage distribution and surface concentration by reflection–absorption infrared spectroscopy. Targets were then placed at the standoff distance and SIRS spectra were collected in active reflectance mode. Limits of detection (LOD) were determined for all distances measured for the target HE. LOD values of 18 and 20 μg/cm2 were obtained for TNT and RDX, respectively, for the SIR longest standoff distance measured. For SRS experiments, as low as 3 mg of TNT and RDX were detected at 7 m source–target distance employing 488 and 514.5 nm excitation wavelengths. The first detection and quantification study of the important formulation C4 is reported. Detection limits as function of laser powers and acquisition times and at a standoff distance of 7 m were obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Yinon J, Zitrin S (1993) Modern methods and applications in the analysis of explosives. Wiley, New York

    Google Scholar 

  2. Steinfeld JI, Wormhoudt J (1998) Annu. Rev. Phys. Chem. 49:203

    Article  CAS  Google Scholar 

  3. Yinon J (1999) Forensic and environmental detection of explosives. Wiley, Chichester, UK

    Google Scholar 

  4. http://www.pnl.gov/nationalsecurity/explosives.detection/stand_off.stmhttp://www.pnl.gov/nationalsecurity/docs/ied_brochure.pdf (accessed 24-Feb-2009)

  5. Smith BC (1996) Fourier transform infrared spectroscopy. CRC, Boca Raton, FL

    Google Scholar 

  6. Mirabella FM (1993) Internal reflection spectroscopy. Dekker, New York, N.Y.

    Google Scholar 

  7. Gunzler H, Gremlich H-U (2002) IR Spectroscopy. Wiley-VCH, Weinheim, Germany

    Google Scholar 

  8. Bougeard D, Buback M, Cao A, Gerwert K, Heise HM, Hoffmann GG, Jordanov B, Kiefer W, Korte EH, Kuzmany H, Leipertz A, Lentz E, Liquier J, Roseler A, Schnockel H, Schrader B, Schrotter HW, Spiekermann M, Taillandier E, Willner H (1995) Infrared and raman spectroscopy. VCH, Weinheim, Germany

    Google Scholar 

  9. Moore DS (2007) Sensing and Imaging: An International Journal 8(1):9

    Article  Google Scholar 

  10. Committee on the Review of Existing and Potential Standoff Explosives Detection Techniques, Board on Chemical Sciences and Technology (2004) Existing and potential standoff explosives detection techniques. The National Academies Press, Washington, D.C, p 92

    Google Scholar 

  11. Bruker-Optik-Gmbh (2003) JPEG-Group OPUS 4.2

  12. Theriault GJ-M, Puckrin E, Hancock J, Lecavalier P, Lepage CJ, Jensen JO (2004) Appl Opt 43:5870

    Article  CAS  Google Scholar 

  13. Hirschfeld T (1974) Applied Optics 13:1435

    Article  CAS  Google Scholar 

  14. Sharma SK, Lucey PG, Ghosh M, Hubble HW, Horton KA (2003) Spectrochimica Acta Part A 59:2391

    Article  CAS  Google Scholar 

  15. Misra AK, Sharma SK, Lucey PG (2006) Appl. Spectrosc 60:223

    Article  CAS  Google Scholar 

  16. Carter JC, Angel SM, Lawrence-Snyder M, Scaffidi J, Whipple RE, Reynolds JG (2005) Appl. Spec. 59:769

    Article  CAS  Google Scholar 

  17. Sedlacek AJ III, Ray MD, Higdon NS, Richter DA (2001) Proc. SPIE 4577:95

    Article  Google Scholar 

  18. Gottfried JL, De Lucia Jr FC, Munson CA, Miziolek AW (2007) Spectrochimica Acta Part B: Atomic Spectroscopy 62:1405

    Article  CAS  Google Scholar 

  19. Dubnikova F, Kosloff R, Almog J, Zeiri Y, Boese R, Itzhaky H, Alt A, Keinan E (2005) J. Am. Chem. Soc. 127:1146

    Article  CAS  Google Scholar 

  20. Buttigieg GA, Knight AK, Denson S, Pommier C, Denton MB (2003) Forensic Sci. Int. 135:53

    Article  CAS  Google Scholar 

  21. Primera-Pedrozo OM, Soto-Feliciano YM, Pacheco-Londoño LC, Hernández-Rivera SP (2008) Sensing and Imaging: An International Journal 9(3–4):27

    Article  Google Scholar 

  22. Perston BB, Hamilton ML, Williamson BE, Harland PW, Thomson MA, Melling PJ (2007) Anal. Chem 79:1231

    Article  CAS  Google Scholar 

  23. Mocak J, Bond AM, Mitchell S, Scollary G (1997) Pure Appl Chem. 69:297

    Article  CAS  Google Scholar 

  24. Derbyshire M, Lamberty A, Gardiner PHE (1999) Anal. Chem. 71:4203

    Article  CAS  Google Scholar 

  25. Primera-Pedrozo OM, Pacheco-Londoño LC, De la Torre-Quintana LF, Hernandez-Rivera SP, Chamberlain RT, Lareau RT (2004) Proc. SPIE 5403:237

    Article  CAS  Google Scholar 

  26. Primera-Pedrozo OM, Pacheco-Londoño L, Ruiz O, Ramírez M, Soto-Feliciano YM, De La Torre-Quintana LF, Hernández-Rivera SP (2005) Proc. SPIE-Int. Soc. Opt. Eng. 5778:543

    CAS  Google Scholar 

  27. Pacheco-Londoño LC, Santiago A, Pujols J, Primera-Pedrozo OM, Mattei A, Ortiz W, Ruiz O, Ramírez M, Hernández-Rivera SP (2007) Proc. SPIE 6542:65423K

    Article  CAS  Google Scholar 

  28. Manrique-Bastidas CA, Castillo-Chará J, Mina N, Castro ME, Hernández-Rivera SP (2004) Proc. SPIE-Int. Soc. Opt. Eng. 5415:1345

    CAS  Google Scholar 

  29. Vrcelj RM, Gallagher HG, Sherwood JN (2001) J. Am. Chem. Soc 123:2291

    Article  CAS  Google Scholar 

  30. Manrique-Bastidas CA, Primera-Pedrozo OM, Pacheco-Londoño LC, Hernández-Rivera SP (2004) Proc. SPIE-Int. Soc. Opt. Eng. 5617:429

    CAS  Google Scholar 

  31. Hernandez-Rivera SP, Manrique-Bastidas CA, Blanco A, Primera OM, Pacheco LC, Castillo-Chara J, Castro ME, Mina N (2004) Proc. SPIE-Int. Soc. Opt. Eng. 5415:474

    CAS  Google Scholar 

  32. Lin-Vien D, Colthup NB, Fateley WG, Grasselli JG (1991) The handbook of infrared and Raman characteristic frequencies of organic molecules. Academic, New York, NY

    Google Scholar 

  33. Clarkson J, Smith WE, Batchelder DN, Smith DA, Coats AM (2003) J Mol Struct 648:203

    Article  CAS  Google Scholar 

  34. Ramos CM, Alzate LF, Hernández NM, Hernández SP, Mina N (2006) J Mol Struct: THEOCHEM 769:69

    Article  CAS  Google Scholar 

  35. Torres P, Mercado L, Cotte I, Hernandez SP, Mina N, Santana A, Chamberlain RT, Lareau R, Castro ME (2004) J. Phys. Chem. B 108:8799

    Article  CAS  Google Scholar 

  36. Infante-Castillo R, Hernández-Rivera SP (2006) Proc. SPIE-Int. Soc. Opt. Eng. 6201:62012F

    Google Scholar 

  37. Infante-Castillo R, Hernández-Rivera SP (2007) Proc. SPIE-Int. Soc. Opt. Eng. 6538:653825

    Google Scholar 

  38. Infante R (2008) Ph.D. Thesis, University of Puerto Rico, Mayagüez, P.R.

  39. Pacheco-Londono LC, Pena LC, Primera-Pedrozo OM, Hernandez-Rivera SP, Mina N, Garcia R, Chamberlain RT, Lareau RT (2004) Proc. SPIE-Int. Soc. Opt. Eng. 5403:279

    CAS  Google Scholar 

  40. Pena AJ, Pacheco-Londono L, Figueroa J, Rivera-Montalvo LA, Roman-Velazquez FR, Hernandez-Rivera SP (2005) Proc. SPIE-Int. Soc. Opt. Eng. 5778:347

    CAS  Google Scholar 

  41. Jensen L, Mortensen PM, Trane R, Harris P, Berg RW (2009) Appl. Spectrosc 63(1):92

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the U.S. Department of Defense, University Research Initiative Multidisciplinary University Research Initiative (URI)-MURI Program, under grant number DAAD19-02-1-0257. The authors also acknowledge contributions from Aaron LaPointe of Night Vision and Electronic Sensors Directorate, Department of Defense and Jennifer Becker from the Army Research Office. The project was also supported by the U.S. Department of Homeland Security under Award Number 2008-ST-061-ED0001. The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the U.S. Department of Homeland Security.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel P. Hernández-Rivera.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pacheco-Londoño, L.C., Ortiz-Rivera, W., Primera-Pedrozo, O.M. et al. Vibrational spectroscopy standoff detection of explosives. Anal Bioanal Chem 395, 323–335 (2009). https://doi.org/10.1007/s00216-009-2954-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-009-2954-y

Keywords

Navigation