Skip to main content
Log in

Stabilization of thin-layer agarose gels after isoelectric focusing with polyacrylamide enables reverse imidazole-zinc staining and facilitates two-dimensional gel electrophoresis

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Large-pore-size agarose gels provide excellent resolving capacity for high molecular weight biomolecules. Thin-layer agarose isoelectric focusing (IEF) gels on polyester support films are especially useful for the separation of large proteins based on their pI in native conformation, but the method has suffered from the lack of detection methods compatible with agarose gels in hydrated form. Recently, an acrylamide copolymerization method was reported to enable mass-spectrometry-compatible silver staining and in-gel digestion of proteins. In this study, the method was further applied by demonstrating successful reverse imidazole-zinc staining of thin-layer agarose IEF gels copolymerized with acrylamide. The sensitivity of the reverse staining method on the composite gel at its best equaled the sensitivity of the traditional dried agarose silver staining method. Owing to the increased durability and reversible detection, the reverse-stained first-dimension gel could be conveniently prepared for the second-dimension sodium dodecyl sulfate polyacrylamide gel electrophoresis by reduction and alkylation. In addition, the micropreparative generation of tryptic peptides of Coomassie brilliant blue R-250 stained proteins in the composite gel is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Westermeier R (2005) Electrophoresis in practice. Wiley-VCH, Weinheim, pp 189–196

    Google Scholar 

  2. Maaloum M, Pernodet N, Tinland B (1998) Electrophoresis 19:1606–1610

    Article  CAS  Google Scholar 

  3. Link H, Kostulas V (1983) Clin Chem 29:810–815

    CAS  Google Scholar 

  4. Olsson T, Kostulas V Link H (1984) Clin Chem 30:1246–1249

    CAS  Google Scholar 

  5. Willoughby EW, Lambert A (1983) Anal Biochem 130:353–358

    Article  CAS  Google Scholar 

  6. Oh-Ishi M, Maeda T (2007) J Chromatogr B 849:211–222

    Article  CAS  Google Scholar 

  7. Hirabayashi T (1981) Anal Biochem 117:443–451

    Article  CAS  Google Scholar 

  8. Hirabayashi T (2000) Electrophoresis 21:446–451

    Article  CAS  Google Scholar 

  9. Manabe T, Yamaguchi N, Mukai J, Hamada O, Tani O (2003) Proteomics 3:832–846

    Article  CAS  Google Scholar 

  10. Altenhofer P, Schierhorn A, Fricke B (2006) Electrophoresis 27:4096–4111

    Article  CAS  Google Scholar 

  11. Hellman J (2007) Proteomics 7:3441–3444

    Article  CAS  Google Scholar 

  12. Castellanos-Serra L, Hardy E (2006) Nat Protoc 1:1544–1551

    Article  CAS  Google Scholar 

  13. Hellman J, Lassila P, Mäntsälä P (1995) Protein Expr Purif 6:56–62

    Article  CAS  Google Scholar 

  14. Fernandez-Patron C, Castellanos-Serra L Rodriquez P (1992) Biotechniques 12:564–573

    CAS  Google Scholar 

  15. O’Connell KL, Stults JT (1997) Electrophoresis 18:349–359

    Article  CAS  Google Scholar 

  16. Scheler C, Lamer S, Pan Z, Li X-P, Salnikow J, Jungblut P (1998) Electrophoresis 19:918–927

    Article  CAS  Google Scholar 

  17. Shevchenko A, Wilm M, Vorm O, Mann M (1996) Anal Chem 68:850–858

    Article  CAS  Google Scholar 

  18. Peats S (1984) Anal Biochem 140:178–182

    Article  CAS  Google Scholar 

  19. Fernandez-Patron C, Castellanos-Serra L, Hardy E, Guerra M, Estevez E, Mehl E, Frank RW (1998) Electrophoresis 19:2398–2406

    Article  CAS  Google Scholar 

  20. Ortiz ML, Calero M, Fernandez Patron C, Castellanos L, Mendez E (1992) FEBS Lett 296:300–304

    Article  CAS  Google Scholar 

  21. Roncada P, Cretich M, Fortin R, Agosti S, De Franceschi L, Greppi GF, Turrini F, Carta F, Turri S, Levi M, Chiari M (2005) Proteomics 5:2331–2339

    Article  CAS  Google Scholar 

  22. Schägger H von Jagow G (1991) Anal Biochem 199:223–231

    Article  Google Scholar 

  23. Kim R, Yokota H, Kim S-H (2000) Anal Biochem 282:147–149

    Article  CAS  Google Scholar 

  24. Haas H, Schlaak M (1987) J Immunol Methods 103:79–85

    Article  CAS  Google Scholar 

  25. Hoffman WL, Kelly PJ, Larrumbide M (1990) J Immunol Methods 132:103–110

    Article  CAS  Google Scholar 

  26. Ekiel I, Abrahamson M (1996) J Biol Chem 271:1314–1321

    Article  CAS  Google Scholar 

  27. Rosenfeld J, Capdevielle J, Guillemot JC, Ferrara P (1992) Anal Biochem 203:173–179

    Article  CAS  Google Scholar 

  28. Hellman U, Wernstedt C, Góñez J, Heldin C-H (1995) Anal Biochem 224:451–455

    Article  CAS  Google Scholar 

  29. Brewer JM (1967) Science 156:256–257

    Article  CAS  Google Scholar 

  30. Righetti PG (2006) J Chromatogr B 841:14–22

    Article  CAS  Google Scholar 

  31. Sun G, Anderson VE (2004) Electrophoresis 25:959–965

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Academy of Finland (grant no. 210323). Heidi Hyytiä is thanked for producing the recombinant 6×His-tagged cystatin C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jukka Hellman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hellman, J. Stabilization of thin-layer agarose gels after isoelectric focusing with polyacrylamide enables reverse imidazole-zinc staining and facilitates two-dimensional gel electrophoresis. Anal Bioanal Chem 392, 239–245 (2008). https://doi.org/10.1007/s00216-008-2247-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-008-2247-x

Keywords

Navigation