Skip to main content
Log in

Characterisation of morphology of self-assembled PEG monolayers: a comparison of mixed and pure coatings optimised for biosensor applications

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

For detection of low concentrations of analytes in complex biological matrices using optical biosensors, a high surface loading with capture molecules and a low nonspecific binding of nonrelevant matrix molecules are essential. To tailor biosensor surfaces in such a manner, poly(ethylene glycols) (PEG) in varying lengths were immobilised covalently onto glass-type surfaces in different mixing ratios and concentrations, and were subsequently modified with three different kinds of receptors. The nonspecific binding of a model protein (ovalbumin, OVA) and the maximum loading of the respective analytes to these prepared surfaces were monitored using label-free and time-resolved reflectometric interference spectroscopy (RIfS). The three different analytes used varied in size: 150 kDa for the anti-atrazine antibody, 60 kDa for streptavidin and 5 kDa for the 15-bp oligonucleotide. We investigated if the mixing of PEG in different lengths could increase the surface loadings of analyte mimicking a three-dimensional matrix as was found using dextrans as sensor coatings. In addition, the effect on the surface loading was investigated with regard to the size of the analyte molecule using such mixed PEGs on the sensor surface. For further characterisation of the surface coatings, polarisation modulation infrared reflection absorption spectroscopy, atomic force microscopy, and ellipsometry were applied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Finch CA (1994) Poly(ethylene glycol) chemistry: biotechnical and biomedical applications, 33rd edn. Plenum, New York

  2. Greenwald RB, Choe YH, McGuire J, Conover CD (2003) Effective drug delivery by PEGylated drug conjugates. Adv Drug Deliv Rev 55(2):217–250

    Article  CAS  Google Scholar 

  3. Michel R, Pasche S, Textor M, Castner DG (2005) Influence of PEG architecture on protein adsorption and conformation. Langmuir 21(26):12327–12332

    Article  CAS  Google Scholar 

  4. Christensen MF (2006) Waterlogged archaeological wood - chemical changes by conservation and degradation. J Raman Spectrosc 37(10):1171–1178

    Article  CAS  Google Scholar 

  5. Jeon SI, Lee JH, Andrade JD, De Gennes PG (1991) Protein-surface interactions in the of polyethylene oxide: I simplified theory. J Colloid Interface Sci 142:149–158

    Article  CAS  Google Scholar 

  6. Vo-Dinh T (2006) Biosensors and biochips. In: Bashid R, Wereley S (eds) BioMEMS and biomedical nanotechnology, 4th edn, Springer, Berlin, pp 3–20

  7. Cooper MA (2003) Label-free screening of bio-molecular interactions. Anal Bioanal Chem 377(5):834–842

    Article  CAS  Google Scholar 

  8. Piehler J, Brecht A, Valiokas R, Liedberg B, Gauglitz G (2000) A high-density poly(ethylene glycol) polymer brush for immobilization on glass-type surfaces. Biosens Bioelectron 15(9–10):473–481

    Article  CAS  Google Scholar 

  9. Zalipsky S (1995) Functionalized poly(ethylene glycols) for preparation of biologically relevant conjugates. Bioconjugate Chem 6(2):150–165

    Article  CAS  Google Scholar 

  10. Li J, Kao WJ (2003) Synthesis of polyethylene glycol (PEG) derivatives and PEGylated-peptide biopolymer conjugates. Biomacromolecules 4(4):1055–1067

    Article  CAS  Google Scholar 

  11. Piehler J, Brecht A, Geckeler KE, Gauglitz G (1996) Surface modification for direct immunoprobes. Biosens Bioelectron 11(6/7):579–590

    Article  CAS  Google Scholar 

  12. Markovic G, Mutschler T, Woellner K, Gauglitz G (2006) Application of surface acoustic waves for optimisation of biocompatibility of carboxymethylated dextran surfaces. Surf Coat Technol 201(3–4):1282–1288

    Article  CAS  Google Scholar 

  13. Johnsson B, Loefaas S, Lindquist G, Edstroem A, Hillgren RMM, Hansson A (1995) Comparison of methods for immobilization to carboxymethyl dextran sensor surfaces by analysis of the specific activity of monoclonal antibodies. J Mol Recognit 8(1/2):125–131

    Article  CAS  Google Scholar 

  14. Loefas S, Johnsson B, Edstroem A, Hansson A, Lindquist G, Hillgren RMM, Stigh L (1995) Methods for site controlled coupling to carboxymethyldextran surfaces in surface plasmon resonance sensors. Biosens Bioelectron 10(9/10):813–822

    CAS  Google Scholar 

  15. Gauglitz G (2005) Direct optical sensors: principles and selected applications. Anal Bioanal Chem 381(1):141–155

    Article  CAS  Google Scholar 

  16. Gauglitz G (2005) Multiple reflectance interference spectroscopy measurements made in parallel for binding studies. Rev Sci Instrum 76(6):062224–1–062224/10

    Google Scholar 

  17. Pröll F, Moehrle B, Kumpf M, Gauglitz G (2005) Label-free characterization of oligonucleotide hybridization using reflectometric interference spectroscopy. Anal Bioanal Chem 382(8):1889–1894

    Article  Google Scholar 

  18. Kumpf M, Gauglitz G (2006) Biomolecular interaction analysis under electrophoretic flow conditions. Anal Bioanal Chem 384(5):1129–1133

    Article  CAS  Google Scholar 

  19. Mehlmann M, Garvin AM, Steinwand M, Gauglitz G (2005) Reflectometric interference spectroscopy combined with MALDI-TOF mass spectrometry to determine quantitative and qualitative binding of mixtures of vancomycin derivatives. Anal Bioanal Chem 382(8):1942–1948

    Article  CAS  Google Scholar 

  20. Dunlop IE, Zorn S, Richter G, Srot V, Kelsch M, van Aken PA, Skoda M, Gerlach A, Spatz JP, Schreiber F (submitted) Titanium-silicon oxide film structures for polarization-modulated infrared reflection absorption spectroscopy

  21. Harris RD, Luff BJ, Wilkinson JS, Piehler J, Brecht A, Gauglitz G, Abuknesha RA (1999) Integrated optical surface plasmon resonance immunoprobe for simazine detection. Biosens Bioelectron 14(4):377–386

    Article  CAS  Google Scholar 

  22. Birkert O, Haake HM, Schutz A, Mack J, Brecht A, Jung G, Gauglitz G (2000) A streptavidin surface on planar glass substrates for the detection of biomolecular interaction. Anal Biochem 282(2):200–208

    Article  CAS  Google Scholar 

  23. Piehler J, Brecht A, Gauglitz G, Zerlin M, Maul C, Thiericke R, Grabley S (1997) Label-free monitoring of DNA-ligand interactions. Anal Biochem 249(1):94–102

    Article  CAS  Google Scholar 

  24. Brecht A, Gauglitz G, Nahm W (1992) Interferometric measurements used in chemical and biochemical sensors. Analusis 20(3):135–140

    CAS  Google Scholar 

  25. Skoda MWA, Jacobs RMJ, Willis J, Schreiber F (2007) Hydration of oligo(ethylene glycol) self-assembled monolayers studied using polarization modulation infrared spectroscopy. Langmuir 23(3):970–974

    Article  CAS  Google Scholar 

  26. Zawisza I, Wittstock G, Boukherroub R, Szunerits S (2007) PM IRRAS investigation of thin silica films deposited on gold. Part 1. Theory and proof of concept. Langmuir 23:9303–9309

    Article  CAS  Google Scholar 

  27. McNamee CE, Yamamoto S, Higashitani K (2007) Preparation and characterization of pure and mixed monolayers of poly(ethylene glycol) brushes chemically adsorbed to silica surfaces. Langmuir 23(8):4389–4399

    Article  CAS  Google Scholar 

  28. Miyazawa T, Ideguchi Y, Fukushima K (1962) Molecular vibrations and structure of high polymers. III. Polarized infrared spectra, normal vibrations, and helical conformation of polyethylene glycol. J Chem Phys 37/12:2764

    Article  Google Scholar 

  29. Barth A, Zscherp C (2002) What vibrations tell us about proteins. Quart Rev Biophys 35:369–430

    Article  CAS  Google Scholar 

  30. Larsson A, Du CX, Liedberg B (2007) UV-Patterned poly(ethylene glycol) matrix for microassay applications. Biomacromolecules 8:3511–3518

    Article  CAS  Google Scholar 

  31. Huang L, Reekmans G, Saerens D, Freidt JM, Frederix F, Francis L, Muyldermans S, Campitelli A, Van Hoof C (2005) Prostate-specific antigen immunosensing based on mixed self-assembled monolayers, camel antibodies and colloidal gold enhanced sandwich assay. Biosens Bioelectron 21:483–490

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We kindly acknowledge financial support by the European Union (projects “CARE-MAN” NMP4-CT-2006–017333, “CASCADE” FOOD-CT-2004–506319, “GenSensor-Nanoparts” NMP4-CT-2003–505808), DFG and the Landesforschungsschwerpunktprogramm Baden-Württemberg. Substrates for PM-IRRAS were prepared in the Central Scientific Facility Thin Film Laboratory at the Max Planck Institute for Metals Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Pröll.

Additional information

All authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mehne, J., Markovic, G., Pröll, F. et al. Characterisation of morphology of self-assembled PEG monolayers: a comparison of mixed and pure coatings optimised for biosensor applications. Anal Bioanal Chem 391, 1783–1791 (2008). https://doi.org/10.1007/s00216-008-2066-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-008-2066-0

Keywords

Navigation