Skip to main content
Log in

How to confirm identified toxicants in effect-directed analysis

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Due to the production and use of a multitude of chemicals in modern society, waters, sediments, soils and biota may be contaminated with numerous known and unknown chemicals that may cause adverse effects on ecosystems and human health. Effect-directed analysis (EDA), combining biotesting, fractionation and chemical analysis, helps to identify hazardous compounds in complex environmental mixtures. Confirmation of tentatively identified toxicants will help to avoid artefacts and to establish reliable cause–effect relationships. A tiered approach to confirmation is suggested in the present paper. The first tier focuses on the analytical confirmation of tentatively identified structures. If straightforward confirmation with neat standards for GC–MS or LC–MS is not available, it is suggested that a lines-of-evidence approach is used that combines spectral library information with computer-based structure generation and prediction of retention behaviour in different chromatographic systems using quantitative structure–retention relationships (QSRR). In the second tier, the identified toxicants need to be confirmed as being the cause of the measured effects. Candidate components of toxic fractions may be selected based, for example, on structural alerts. Quantitative effect confirmation is based on joint effect models. Joint effect prediction on the basis of full concentration–response plots and careful selection of the appropriate model are suggested as a means to improve confirmation quality. Confirmation according to the Toxicity Identification Evaluation (TIE) concept of the US EPA and novel tools of hazard identification help to confirm the relevance of identified compounds to populations and communities under realistic exposure conditions. Promising tools include bioavailability-directed extraction and dosing techniques, biomarker approaches and the concept of pollution-induced community tolerance (PICT).

Toxicity confirmation in EDA as a tiered approach

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2a, b
Fig. 3

Similar content being viewed by others

Abbreviations

AhR:

arylhydrocarbon receptor

AMDIS:

Automated Mass Spectral Deconvolution and Identification System

BEQ:

benzo[a]pyrene equivalent quantity

BP:

boiling point

CA:

concentration addition

CALUX:

chemical-activated luciferase expression

ECX:

effect concentration required to achieve X% effect

EDA:

effect-directed analysis

EROD:

ethoxyresorufin-O-deethylase

DNA:

deoxyribonucleic acid

GC/MS:

gas chromatography with mass-selective detection

IA:

independent action

ICQ:

index of confirmation quality

IEQ:

induction equivalent quantities

IP:

identification points

LC-Q-TOF-MS:

liquid chromatography with a hybrid quadrupole–time-of-flight mass spectrometer

LSER:

linear solvation free-energy relationships

NIST:

National Institute of Standards and Technology

NMR:

nuclear magnetic resonance

PAH:

polycyclic aromatic hydrocarbon

PCB:

polychlorinated biphenyl

PCDD/F:

polychlorinated dibenzo-p-dioxin and furan

PDMS:

polydimethylsiloxane

PICT:

pollution-induced community tolerance

QSAR:

quantitative structure–activity relationship

QSRR:

quantitative structure–retention relationship

REP:

relative potency

RI:

retention index

RTL-W1:

rainbow trout liver cell line W1

SPMD:

semipermeable membrane device

TEQ:

toxicity equivalent quantity

TIE:

toxicity identification evaluation

TU:

toxic units

US EPA:

United States Environmental Protection Agency

References

  1. Schuetzle D, Lewtas J (1986) Anal Chem 58:1060A–1075A

    Article  CAS  Google Scholar 

  2. Burgess RM (2000) Int J Environ Pollut 13:2–33

    Google Scholar 

  3. Brack W (2003) Anal Bioanal Chem 377:397–407

    Article  CAS  Google Scholar 

  4. Hewitt LM, Marvin CH (2005) Mutat Res–Rev Mutat 589:208–232

    Google Scholar 

  5. Brack W, Klamer HJC, López de Alda MJ, Barceló D (2007) Environ Sci Pollut Res 14:30–38

    Article  CAS  Google Scholar 

  6. Brack W, Schirmer K (2003) Environ Sci Technol 37:3062–3070

    Article  CAS  Google Scholar 

  7. Norberg-King TJ, Mount DI, Durhan EJ, Ankley GT, Burkhard LP, Amato JR, Lukasewycz MT, Schubauer-Berigan MK, Anderson-Carnahan L (1991) Methods for aquatic toxicity identification evaluations. Phase I toxicity characterization procedures (EPA/600/6-91/003). United States Environmental Protection Agency, Washington, DC

  8. Mount DI, Anderson-Carnahan L (1989) Methods for aquatic toxicity identification evaluations. Phase II toxicity identification procedures (EPA/600/3-88/035). United States Environmental Protection Agency, Washington, DC

  9. Mount DI (1989) Methods for aquatic toxicity identification evaluation. Phase III toxicity confirmation procedures (EPA/600/3-88/036). United States Environmental Protection Agency, Washington, DC

  10. Bailey HC, Elphick JR, Krassoi R, Lovell A (2001) Environ Toxicol Chem 20:2877–2882

    Article  CAS  Google Scholar 

  11. Grote M, Brack W, Walter HA, Altenburger R (2005) Environ Toxicol Chem 24:1420–1427

    Article  CAS  Google Scholar 

  12. Brack W, Bakker J, de Deckere E, Deerenberg C, van Gils J, Hein M, Jurajda P, Kooijman SALM, Lamoree MH, Lek S, López de Alda MJ, Marcomini A, Muñoz I, Rattei S, Segner H, Thomas K, von der Ohe PC, Westrich B, de Zwart D, Schmitt-Jansen M (2005) Environ Sci Pollut Res 12:252–256

    Article  CAS  Google Scholar 

  13. Brack W, Kind T, Hollert H, Schrader S, Möder M (2003) J Chromatogr A 986:55–66

    Google Scholar 

  14. Meinert C, Moeder M, Brack W (2007) Chemosphere 70:215–223

    Article  CAS  Google Scholar 

  15. Korytar P, Leonards PEG, de Boer J, Brinkman UAT (2005) J Chromatogr A 1086:29–44

    Google Scholar 

  16. Nukaya H, Yamashita J, Tsuji K, Terao Y, Ohe T, Sawanishi H, Katsuhara T, Kiyokawa K, Tezuka M, Oguri A, Sugimura T, Wakabayashi K (1997) Chem Res Toxicol 10:1061–1066

    Article  CAS  Google Scholar 

  17. Oguri A, Shiozawa T, Terao Y, Nukaya H, Yamashita J, Ohe T, Sawanishi H, Katsuhara T, Sugimura T, Wakabayashi K (1998) Chem Res Toxicol 11:1195–1200

    Article  CAS  Google Scholar 

  18. Shiozawa T, Tada A, Nukaya H, Watanabe T, Takahashi Y, Asanoma M, Ohe T, Sawanishi H, Katsuhara T, Sugimura T, Wakabayashi K, Terao Y (2000) Chem Res Toxicol 13:535–540

    Article  CAS  Google Scholar 

  19. Belknap AM, Solomon KR, MacLatchy DL, Dube MG, Hewitt LM (2006) Environ Toxicol Chem 25:2322–2333

    Article  CAS  Google Scholar 

  20. Christmann RF (1982) Environ Sci Technol 16:143A

    Article  Google Scholar 

  21. National Institute of Standards and Technology (2007) Automated mass spectral deconvolution and identification system (AMDIS). NIST, Washington, DC (see http://chemdata.nist.gov/mass-spc/amdis/, last accessed 24 December 2007)

  22. NIST/EPA/NIH (2005) Mass Spectral Library Version 2.0. US Department of Commerce, National Institute of Standards and Technology, Washington, DC

  23. Benecke C, Grüner T, Kerber A, Laue R, Wieland T (1997) Fresenius’ J Anal Chem 359:23–32

    Article  CAS  Google Scholar 

  24. Kerber A, Laue P, Meringer M, Rucker C (2005) Match–Commun Math Comp Chem 54:301–312

    Google Scholar 

  25. Kerber A, Laue R, Meringer M, Rücker C (2004) J Comput Chem Jpn 3:85–96

    Google Scholar 

  26. Kerber A, Laue R, Meringer M, Varmuza K (2001) Advances in mass spectrometry, vol 15. Wiley, New York

  27. Eckel WP, Kind T (2003) Anal Chim Acta 494:235–243

    Google Scholar 

  28. Abraham MH (1993) J Phys Org Chem 6:660–684

    Article  CAS  Google Scholar 

  29. Urbanczyk A, Staniewski J, Szymanowski J (2002) Anal Chim Acta 466:151–159

    Google Scholar 

  30. Vitha M, Carr PW (2006) J Chromatogr A 1126:143–194

    Google Scholar 

  31. Platts JA, Butina D, Abraham MH, Hersey A (1999) J Chem Inf Comp Sci 39:835–845

    Article  CAS  Google Scholar 

  32. Schüürmann G, Ebert RU, Kuehne R (2006) Chimia 60:691–698

    Article  CAS  Google Scholar 

  33. Brack W, Schirmer K, Erdinger L, Hollert H (2005) Environ Toxicol Chem 24:2445–2458

    Article  CAS  Google Scholar 

  34. Petrovic M, Barcelo D (2006) J Mass Spectrom 41:1259–1267

    Article  CAS  Google Scholar 

  35. Bobeldijk I, Vissers JPC, Kearney G, Major H, van Leerdam JA (2001) J Chromatogr A 929:63–74

    Google Scholar 

  36. Grung M, Lichtenthaler R, Ahel M, Tollefsen KE, Langford K, Thomas KV (2007) Chemosphere 67:108–120

    Article  CAS  Google Scholar 

  37. EC (2002) Commission Decision of 12 August 2002 implementing Council Directive 96/23/EC concerning the performance of analytical methods and interpretation of results (2002/657/EC). European Commission, Brussels

  38. Pérez S, Eichhorn P, Barceló D (2007) Anal Chem (in press)

  39. Picó Y, la Farré M, Soler C, Barceló D (2007) Anal Chem (in press)

  40. Farre M, Kuster M, Brix R, Rubio F, Alda MJL, Barcelo D (2007) J Chromatogr A 1160:166–175

    Google Scholar 

  41. Picó Y, la Farré M, Soler C, Barceló D (2007) J Chromatogr A (in press)

  42. Braga RS, Barone PMVB, Galvao DS (1999) J Mol Struct–Theochem 464:257–266

    Google Scholar 

  43. Liu HX, Papa E, Gramatica P (2006) Chem Res Toxicol 19:1540–1548

    Article  CAS  Google Scholar 

  44. von der Ohe PC, Kuhne R, Ebert RU, Altenburger R, Liess M, Schuurmann G (2005) Chem Res Toxicol 18:536–555

    Article  CAS  Google Scholar 

  45. Fang H, Tong WD, Branham WS, Moland CL, Dial SL, Hong HX, Xie Q, Perkins R, Owens W, Sheehan DM (2003) Chem Res Toxicol 16:1338–1358

    Article  CAS  Google Scholar 

  46. Arulmozhiraja S, Morita M (2004) Chem Res Toxicol 17:348–356

    Article  CAS  Google Scholar 

  47. Estrada E, Molina E (2006) J Mol Graph Model 25:275–288

    Article  CAS  Google Scholar 

  48. Enslein K, Gombar VK, Blake BW (1994) Mut Res 305:47–61

    CAS  Google Scholar 

  49. Altenburger R, Nendza M, Schuurmann G (2003) Environ Toxicol Chem 22:1900–1915

    Article  CAS  Google Scholar 

  50. Faust M, Altenburger R, Backhaus T, Bodeker W, Scholze M, Grimme LH (2000) J Environ Qual 29:1063–1068

    Article  CAS  Google Scholar 

  51. Swartz RC, Schults DW, Ozretich RJ, Lamberson JO, Cole FA, DeWitt TH, Redmond MS, Ferraro SP (1995) Environ Toxicol Chem 14:1977–1987

    Article  CAS  Google Scholar 

  52. Boxall ABA, Maltby L (1997) Arch Environ Contam Toxicol 33:9–16

    Article  CAS  Google Scholar 

  53. Clemons JH, Dixon DG, Bols NC (1997) Chemosphere 34:1105–1119

    Article  CAS  Google Scholar 

  54. Jung KJ, Klaus T, Fent K (2001) Environ Toxicol Chem 20:149–159

    Article  CAS  Google Scholar 

  55. Tillitt DE, Giesy JP, Ankley GT (1991) Environ Sci Technol 25:87–92

    Article  CAS  Google Scholar 

  56. Willett KL, Gardinali PR, Sericano JL, Wade TL, Safe SH (1997) Arch Environ Contam Toxicol 32:442–448

    Article  CAS  Google Scholar 

  57. Brown DJ, Chu M, Overmeire IV, Chu A, Clark GC (2001) Organohal Comp 53:211–214

    CAS  Google Scholar 

  58. Machala M, Vondracek J, Blaha L, Ciganek M, Neca J (2001) Mutat Res 497:49–62

    Google Scholar 

  59. van den Berg M, Birnbaum L, Bosveld ATC, Brunstrom B, Cook P, Feeley M, Giesy JP, Hanberg A, Hasegawa R, Kennedy SW, Kubiak T, Larsen JC, van Leeuwen FXR, Liem AKD, Nolt C, Peterson RE, Poellinger L, Safe S, Schrenk D, Tillitt D, Tysklind M, Younes M, Waern F, Zacharewski T (1998) Environ Health Persp 106:775–792

    Article  Google Scholar 

  60. Vondracek J, Kozubik A, Machala M (2002) Toxicol Sci 70:193–201

    Google Scholar 

  61. Houtman CJ, Van Houten YK, Leonards PG, Brouwer A, Lamoree MH, Legler J (2006) Environ Sci Technol 40:2455–2461

    Article  CAS  Google Scholar 

  62. Blaha L, Kapplova P, Vondracek J, Upham B, Machala M (2002) Toxicol Sci 65:43–51

    Google Scholar 

  63. Madill REA, Brownlee BG, Josephy PD, Bunce NJ (1999) Environ Sci Technol 33:2510–2516

    Article  CAS  Google Scholar 

  64. Durant JL, Busby WF, Lafleur AL, Penman BW, Crespi CL (1996) Mutat Res 371:123–157

    Google Scholar 

  65. Altenburger R, Walter H, Grote M (2004) Environ Sci Technol 38:6353–6362

    Article  CAS  Google Scholar 

  66. Brack W, Segner H, Möder M, Schüürmann G (2000) Environ Toxicol Chem 19:2493–2501

    Article  CAS  Google Scholar 

  67. Brack W, Schirmer K, Kind T, Schrader S, Schüürmann G (2002) Environ Toxicol Chem 21:2654–2662

    Article  CAS  Google Scholar 

  68. Payne J, Rajapakse N, Wilkins M, Kortenkamp A (2000) Environ Health Persp 108:983–987

    Article  CAS  Google Scholar 

  69. Faust M, Altenburger R, Backhaus T, Blanck H, Boedeker W, Gramatica P, Hamer V, Scholze M, Vighi M, Grimme LH (2003) Aquat Toxicol 63:43–63

    Article  CAS  Google Scholar 

  70. Walter H, Consolaro F, Gramatica P, Scholze M, Altenburger R (2002) Ecotoxicology 11:299–310

    Article  CAS  Google Scholar 

  71. Tammer B, Lehmann I, Nieber K, Altenburger R (2007) Toxicol Lett 170:124–133

    Article  CAS  Google Scholar 

  72. Kortenkamp A, Altenburger R (1999) Sci Total Environ 233:131–140

    Article  CAS  Google Scholar 

  73. Hilscherova K, Kannan K, Kang YS, Holoubek I, Machala M, Masunaga S, Nakanishi J, Giesy JP (2001) Environ Toxicol Chem 20:2768–2777

    Article  CAS  Google Scholar 

  74. Gale RW, Long ER, Schwartz TR, Tillitt DE (2000) Environ Toxicol Chem 19:1348–1359

    Article  CAS  Google Scholar 

  75. Putzrath RM (1997) Regul Toxicol Pharmacol 25:68–78

    Article  CAS  Google Scholar 

  76. Villeneuve DL, Blankenship AL, Giesy JP (2000) Environ Toxicol Chem 19:2835–2843

    Article  CAS  Google Scholar 

  77. Rosenkranz HS, McCoy EC, Sanders DR, Butler M, Kiriazides DK, Mermelstein R (1980) Science 209:1039–1042

    Article  CAS  Google Scholar 

  78. Møller M, Alfheim I, Larssen S, Mikalsen A (1982) Environ Sci Technol 16:221–225

    Article  Google Scholar 

  79. Fernandez P, Grifoll M, Solanas AM, Bayona JM, Albaiges J (1992) Environ Sci Technol 26:817–829

    Article  CAS  Google Scholar 

  80. Durant JL, Lafleur AL, Plummer EF, Taghizadeh K, Busby WF, Thilly WG (1998) Environ Sci Technol 32:1894–1906

    Article  CAS  Google Scholar 

  81. Erdinger L, Dorr I, Durr M, Hopker KA (2004) Mutat Res–Genet Toxicol Environ Mutagen 564:149–157

    Google Scholar 

  82. Marvin CH, Tessaro M, McCarry BE, Bryant DW (1994) Sci Tot Environ 156:119–131

    Article  CAS  Google Scholar 

  83. White PA (2002) Mut Res 515:85–98

    CAS  Google Scholar 

  84. Haugen DA, Peak MJ (1983) Mut Res 116:257–269

    Article  CAS  Google Scholar 

  85. Zeiger E, Pagano DA (1984) Environ Mutagen 6:683–694

    Article  CAS  Google Scholar 

  86. Brack W, Frank H (1998) Ecotox Environ Saf 40:34–41

    Article  CAS  Google Scholar 

  87. Ensenbach U (1998) Fres Environ Bull 7:531–538

    Google Scholar 

  88. Drummond RA, Russom CL (1990) Environ Toxicol Chem 9:37–46

    Article  CAS  Google Scholar 

  89. Pellacani C, Buschini A, Furlini M, Poli P, Rossi C (2006) Aquat Toxicol 77:1–10

    Article  CAS  Google Scholar 

  90. Nikoyan A, De Meo M, Sari-Minodier I, Chaspoul F, Gallice P, Botta A (2007) Mutat Res–Genet Toxicol Environ Mutagen 626:88–101

    Google Scholar 

  91. Brack W, Altenburger R, Ensenbach U, Möder M, Segner H, Schüürmann G (1999) Arch Environ Contam Toxicol 37:164–174

    Article  CAS  Google Scholar 

  92. Reichenberg F, Mayer P (2006) Environ Toxicol Chem 25:1239–1245

    Article  CAS  Google Scholar 

  93. Burgess RM, Perron MM, Cantwell M, Ho KT, Serbst JR, Pelletier E (2004) Arch Environ Contam Toxicol 47:440–447

    Article  CAS  Google Scholar 

  94. Burgess RM, Cantwell MG, Pelletier MC, Ho KT, Serbst JR, Cook HF, Kuhn A (2000) Environ Toxicol Chem 19:982–991

    Article  CAS  Google Scholar 

  95. Burgess RM, Perron MM, Cantwell MG, Ho KT, Pelletier MC, Serbst JR, Ryba SA (2007) Environ Toxicol Chem 26:61–67

    Article  CAS  Google Scholar 

  96. Ho KT, Burgess RM, Pelletier MC, Serbst JR, Cook H, Cantwell MG, Ryba SA, Perron MM, Lebo J, Huckins JN, Petty J (2004) Environ Toxicol Chem 23:2124–2131

    Article  CAS  Google Scholar 

  97. Cornelissen G, Rigterink H, ten Hulscher DEM, Vrind BA, van Noort PCM (2001) Environ Toxicol Chem 20:706–711

    Article  CAS  Google Scholar 

  98. Schwab K, Brack W (2007) J Soil Sediments 7:178–186

    Google Scholar 

  99. van den Heuvel-Greve MJ, Kooman H, Hermans J, Bakker J (2007) A TIE pilot study using in vivo bioassay with the estuarine amphipod, Corophium volutator, as a first approach to in vivo EDA. Poster presentation at 17th Annual Meeting of SETAC Europe, Porto, Portugal, 20–24 May 2007

  100. Duft M, Schulte-Oehlmann U, Weltje L, Tillmann M, Oehlmann J (2003) Aquat Toxicol 64:437–449

    Article  CAS  Google Scholar 

  101. Hyne RV, Maher WA (2003) Ecotox Environ Saf 54:366–374

    Article  CAS  Google Scholar 

  102. Hinton DE, Kullman SW, Hardman RC, Volz DC, Chen PJ, Carney M, Bencic DC (2005) Mar Pollut Bull 51:635–648

    Article  CAS  Google Scholar 

  103. Shugart LR (2000) Ecotoxicology 9:329–340

    Article  CAS  Google Scholar 

  104. Hutchinson TH, Ankley GT, Segner H, Tyler CR (2006) Environ Health Persp 114:106–114

    Article  Google Scholar 

  105. Fisher T, Crane M, Callaghan A (2003) Ecotox Environ Saf 54:1–6

    Article  CAS  Google Scholar 

  106. Machala M, Dušek L, Hilscherová K, Kubínová R, Jurajda P, Neca J, Ulrich R, Gelnar M, Studnicková Z, Holoubek I (2001) Environ Toxicol Chem 20:1141–1148

    Article  CAS  Google Scholar 

  107. Solé M, López de Alda MJ, Castillo M, Porte C, Ladegaard-Pedersen K, Barceló D (2000) Environ Sci Technol 34:5076–5083

    Article  CAS  Google Scholar 

  108. Mayer P, Wernsing J, Tolls J, de Maagd PGJ, Sijm DTHM (1999) Environ Sci Technol 33:2284–2290

    Article  CAS  Google Scholar 

  109. Heinis LJ, Highland TL, Mount DR (2004) Environ Sci Technol 38:6256–6262

    Article  CAS  Google Scholar 

  110. Brown RS, Akhtar P, Akerman J, Hampel L, Kozin IS, Villerius LA, Klamer HJC (2001) Environ Sci Technol 35:4097–4102

    Article  CAS  Google Scholar 

  111. Kiparissis Y, Akhtar P, Hodson P, Brown RS (2003) Environ Sci Technol 37:2262–2266

    Article  CAS  Google Scholar 

  112. Bandow N, Altenburger R, Paschke A, Brack W (2007) PDMS coated stirring bars—a new method to include the bioavailability in the effect-directed analysis of contaminated sediments. Presentation at 17th Annual Meeting of SEATC Europe, Porto, Portugal, 20–24 May 2007

  113. Donkin P, Smith EL, Rowland SJ (2003) Environ Sci Technol 37:4825–4830

    Article  CAS  Google Scholar 

  114. Houtman CJ, Van Oostven AM, Brouwer A, Lamoree MH, Legler J (2004) Environ Sci Technol 38:6415–6423

    Article  CAS  Google Scholar 

  115. Schmitt-Jansen M, Altenburger R (2005) Environ Toxicol Chem 24:304–312

    Article  CAS  Google Scholar 

  116. Petersen S, Gustavson K (1998) Aquat Toxicol 40:253–264

    Article  CAS  Google Scholar 

  117. Blanck H (2002) Human Ecol Risk Assess 8:1003–1034

    Article  Google Scholar 

  118. Schmitt-Jansen M, Veit U, Dudel G, Altenburger R (2007) Basic Appl Ecol DOI 10.1016/j.baae.2007.08.008

  119. Schmitt-Jansen M, Reiners S, Altenburger R (2006) UWSF-Z Umweltchem Ökotoxikol 16:85–91

    Google Scholar 

Download references

Acknowledgements

This study was funded by the European Union in the framework of the Integrated Project MODELKEY (Contract 511237-GOCE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Werner Brack.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brack, W., Schmitt-Jansen, M., Machala, M. et al. How to confirm identified toxicants in effect-directed analysis. Anal Bioanal Chem 390, 1959–1973 (2008). https://doi.org/10.1007/s00216-007-1808-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-007-1808-8

Keywords

Navigation