Skip to main content
Log in

Covalently bonded DNA aptamer chiral stationary phase for the chromatographic resolution of adenosine

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In this work, a target-specific aptamer chiral stationary phase (CSP) based on the oligonucleotidic selector binding to silica particles through a covalent linkage was developed. An anti-d-adenosine aptamer was coupled, using an in-situ method, by way of an amide bond to macroporous carboxylic acid based silica. Frontal chromatography analysis was performed to evaluate the column properties, i.e., determination of the stationary phase binding capacity and the dissociation constant of the target-immobilized aptamer complex. It was found that such covalent immobilization was able to maintain the aptamer binding properties at a convenient level for an efficient enantioseparation. Subsequently, the separation of adenosine enantiomers was investigated under different operating conditions, including changes in the eluent’s ionic strength and the proportion of organic modifiers as well as column temperatures. It was demonstrated that, under various conditions of use and storage, the present CSP was stable over time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ravelet C, Peyrin E (2006) J Sep Sci 29:1322–13331

    Article  CAS  Google Scholar 

  2. Michaud M, Jourdan E, Villet A, Ravel A, Grosset C, Peyrin E (2003) J Am Chem Soc 125:8672–8679

    Article  CAS  Google Scholar 

  3. Michaud M, Jourdan E, Ravelet C, Villet A, Ravel A, Grosset C, Peyrin E (2004) Anal Chem 76:1015–1020

    Article  CAS  Google Scholar 

  4. Brumbt A, Ravelet C, Grosset C, Ravel A, Villet A, Peyrin E (2005) Anal Chem 77:1993–1998

    Article  CAS  Google Scholar 

  5. Ravelet C, Boulkedid R, Ravel A, Grosset C, Villet A, Fize J, Peyrin E (2005) J Chromatogr A 1076:62–70

    Article  CAS  Google Scholar 

  6. Ruta J, Grosset C, Ravelet C, Fize J, Villet A, Ravel A, Peyrin E (2007) J Chromatogr B 845:186–190

    Article  CAS  Google Scholar 

  7. Ruta J, Ravelet C, Grosset C, Fize J, Ravel A, Villet A, Peyrin E (2006) Anal Chem 78:3032–3039

    Article  CAS  Google Scholar 

  8. Ruta J, Ravelet C, Baussanne I, Decout JL, Peyrin E (2007) Anal Chem 79:4716–4719

    Article  CAS  Google Scholar 

  9. Fujita K, Silver J (1993) Biotechniques 14:608–617

    CAS  Google Scholar 

  10. Holmberg A, Blomstergren A, Nord O, Lukacs M, Lundeberg J, Uhlén M (2005) Electrophoresis 26:501–510

    Article  CAS  Google Scholar 

  11. Millot MC (2003) J Chromatogr B 797:131–159

    Article  CAS  Google Scholar 

  12. Franco EJ, Hofstetter H, Hofstetter O (2006) J Sep Sci 29:1458–1469

    Article  CAS  Google Scholar 

  13. Kotia RB, Li L, McGown LB (2000) Anal Chem 72:827–831

    Article  CAS  Google Scholar 

  14. Clark SL, Remcho VT (2003) J Sep Sci 26:1451–1454

    Article  CAS  Google Scholar 

  15. Jarrett HW (1987) J Chromatogr 405:179–189

    Article  Google Scholar 

  16. Goss TA, Bard M, Jarrett HW (1990) J Chromatogr 508:279–287

    Article  CAS  Google Scholar 

  17. Deng Q, German I, Buchanan D, Kennedy RT (2001) Anal Chem 73:5415–5421

    Article  CAS  Google Scholar 

  18. Huang CC, Cao Z, Chang HT, Tan W (2004) Anal Chem 76:6973–6981

    Article  CAS  Google Scholar 

  19. Huizenga DE, Szostak JW (1995) Biochemistry 34:656–665

    Article  CAS  Google Scholar 

  20. Smirnov I, Shafer RH (2000) Biochemistry 39:1462–1468

    Article  CAS  Google Scholar 

  21. Brion P, Westhof E (1997) Annu Rev Biophys Biomol Struct 26:113–137

    Article  CAS  Google Scholar 

  22. Draper DE (1996) Trends Biochem Sci 21:145–149

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Peyrin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruta, J., Ravelet, C., Désiré, J. et al. Covalently bonded DNA aptamer chiral stationary phase for the chromatographic resolution of adenosine. Anal Bioanal Chem 390, 1051–1057 (2008). https://doi.org/10.1007/s00216-007-1552-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-007-1552-0

Keywords

Navigation