Skip to main content
Log in

Alteration of biological samples in speciation analysis of metalloproteins

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

For investigations of metalloproteins by speciation analysis, the integrity of the protein–metal complexes before and during separation is crucial. Knowledge about potential alterations of the samples is thus essential to avoid misinterpretations of the analytical results. Chromatographic element profiles of different cytosolic samples from animal tissues were measured repeatedly to estimate the sample stability. The dependence of the signals on the dwell time of the sample in an autosampling device at 4 °C for a period of 10 h was observed. Alterations in the element content of different metal-containing fractions were quantified by means of recovery values. Some metalloprotein fractions (e.g. ≈27-kDa arsenic, ≈27-kDa iron and different zinc fractions) were stable or only minor alterations were observed and for their investigation an autosampling device is therefore suitable. However, most of the other metalloprotein fractions, especially nickel-containing proteins, showed major alterations: these samples should therefore be analysed immediately after preparation or directly after thawing.

Chromatographic manganese-profiles of 11 repeated SEC-ICP-MS-separations of rat brain cytosol. The first sample at time 0 h was the run immediately started after thawing of the prepared cytosol; the other samples were measured hourly, taken from the same sample vial. In addition to the time axis the estimated molecular mass axis is plotted

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Koppenaal DW, Hieftje GM (2007) J Anal At Spectrom 22:111

    Article  CAS  Google Scholar 

  2. Cornelis R et al (2003) Handbook of elemental speciation: techniques and methodology. Wiley, Chichester, England

    Google Scholar 

  3. Łobinski R, Schaumlöffel D, Szpunar J (2006) Mass Spectrom Rev 25:255–289

    Article  Google Scholar 

  4. Sanz-Medel A, Montes-Bayon M, Fernandez Sanchez ML (2003) Anal Bioanal Chem 377:236–247

    Article  CAS  Google Scholar 

  5. Szpunar J (2000) Analyst 125:963–988

    Article  CAS  Google Scholar 

  6. Janeway CA, Traver P (1995) Immonologie. Spektrum - Akademischer Verlag GmbH, Heidelberg, Berlin, Oxford

    Google Scholar 

  7. De Cremer K (2003) Sampling of Clinical Samples: Collection and Storage. In: Cornelis R et al (eds) Handbook of elemental speciation: techniques and methodology. Wiley, Chichester, England

    Google Scholar 

  8. Wolf C, Rösick U, Brätter P (2002) Anal Bioanal Chem 372:491–494

    Article  CAS  Google Scholar 

  9. Wolf C, Wenda N, Kyriakopoulos A (2006) Speciation of Metalloproteins. In: Kyriakopoulos A et al (eds) Proceedings of the 5th fall conference on metalloproteins and metalloidproteins. Herbert Utz Verlag, München

  10. Moreno P, Quijano MA, Gutierrez AM, Perez-Conde MC, Camara C (2002) Anal Bioanal Chem 374:466–476

    Article  CAS  Google Scholar 

  11. Weber G (1993) Fresenius J Anal Chem 346:639–942

    Article  CAS  Google Scholar 

  12. Behne D, Hilmert H, Scheid S, Gessner H, Elger W (1988) Biochem Biophys Acta 966:12–21

    CAS  Google Scholar 

  13. Richarz AN, Brätter P (2002) Anal Bioanal Chem 372:412–417

    Article  CAS  Google Scholar 

  14. Miyayama T, Ogra Y, Suzuki KT (2007) J Anal At Spectrom 22:179–182

    Article  CAS  Google Scholar 

  15. Bradshaw TP (1998) Introduction to peptide and protein HPLC. Phenomenex, Aschaffenburg, (Order No. AA0–3908)

  16. Michalke B (2002) Trends Anal Chem 21:142–153

    Article  CAS  Google Scholar 

  17. Rabon EC, Smillie K, Seru V, Rabon R (1993) J Biol Chem 268:8012–8018

    CAS  Google Scholar 

  18. Korolev S, Dementieva I, Sanishvili R, Minor W, Otwinowski Z, Joachimiak A (2001) Acta Crystallogr D 57:1008–1012

    Article  CAS  Google Scholar 

  19. Fabisiak JP, Tyurin VA, Tyurina YY, Borisenko GG, Korotaeva A, Pitt BR, Lazo JS, Kagan VE (1999) Arch Biochem Biophys 363:171–181

    Article  CAS  Google Scholar 

  20. Weser U, Hartman HJ (1991) Purification of Yeast Copper-Metallothionein. In: Riordan JF, Vallee BL (eds) Methods of enzymology (205). Academic Press, San Diego, California

    Google Scholar 

  21. Guss JM, Freeman HC (2001) Aminopeptidase P. In: Messerschmidt A, Huber R, Poulos T, Wieghardt K (eds) Handbook of metalloproteins (2). Wiley, Chichester, England

    Google Scholar 

  22. Knispel T, Ruhnau C, Lassen S, Griesel S, Prange A, Denkhaus E (2005) Anal Bioanal Chem 383:404–413

    Article  CAS  Google Scholar 

  23. Thauer RK (2001) Science 293:1264–1265

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Wolf.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM

Alteration of biological samples in speciation analysis of metalloproteins (PDF 3.12 Mb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wolf, C., Wenda, N., Richter, A. et al. Alteration of biological samples in speciation analysis of metalloproteins. Anal Bioanal Chem 389, 799–810 (2007). https://doi.org/10.1007/s00216-007-1495-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-007-1495-5

Keywords

Navigation