Skip to main content
Log in

Gold nanoparticle aggregation-based highly sensitive DNA detection using atomic force microscopy

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The potential ability of atomic force microscopy (AFM) as a quantitative bioanalysis tool is demonstrated by using gold nanoparticles as a size enhancer in a DNA hybridization reaction. Two sets of probe DNA were functionalized on gold nanoparticles and sandwich hybridization occurred between two probe DNAs and target DNA, resulting in aggregation of the nanoparticles. At high concentrations of target DNA in the range from 100 nM to 10 μM, the aggregation of gold nanoparticles was determined by monitoring the color change with UV-vis spectroscopy. The absorption spectra broadened after the exposure of DNA–gold nanoparticles to target DNA and a new absorption band at wavelengths >600 nm was observed. However, no differences were observed in the absorption spectra of the gold nanoparticles at low concentrations of target DNA (10 pM to 10 nM) due to insufficient aggregation. AFM was used as a biosensing tool over this range of target DNA concentrations in order to monitor the aggregation of gold nanoparticles and to quantify the concentration of target DNA. Based on the AFM images, we successfully evaluated particle number and size at low concentrations of target DNA. The calibration curve obtained when mean particle aggregate diameter was plotted against concentration of target DNA showed good linearity over the range 10 pM to 10 nM, the working range for quantitative target DNA analysis. This AFM-based DNA detection technique was three orders of magnitude more sensitive than a DNA detection method based on UV-vis spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Elghanian R, Storhoff JJ, Mucic RC, Letsinger RL, Mirkin CA (1997) Science 277:1078–1081

    Article  CAS  Google Scholar 

  2. Lian W, Litherland SA, Badrane H, Tan W, Wu D, Baker HV, Gulig PA, Lim DV, Jin S (2004) Anal Biochem 334:135–144

    Article  CAS  Google Scholar 

  3. Sato K, Hosokawa K, Maeda M (2003) J Am Chem Soc 125:8102–8103

    Article  CAS  Google Scholar 

  4. Fang X, Liu X, Schuster S, Tan W (1999) J Am Chem Soc 121:2921–2922

    Article  CAS  Google Scholar 

  5. Nie S, Emory S (1997) Science 275:1102–1106

    Article  CAS  Google Scholar 

  6. Kneipp K, Kneipp H, Itzkan I, Dasari RR, Feld MS (1999) Chem Rev 99:2957–2976

    Article  CAS  Google Scholar 

  7. Rosi NL, Mirkin CA (2005) Chem Rev 105:1547–1562

    Article  CAS  Google Scholar 

  8. Daniel MC, Astruc D (2004) Chem Rev 104:293–346

    Article  CAS  Google Scholar 

  9. Storhoff JJ, Lucas AD, Garimella V, Bao YP, Müller UR (2004) Nat Biotech 22:883–887

    Article  CAS  Google Scholar 

  10. Storhoff JJ, Elghanian R, Mucic RC, Mirkin CA, Letsinger RL (1998) J Am Chem Soc 120:1959–1964

    Article  CAS  Google Scholar 

  11. Taton TA, Mirkin CA, Letsinger RL (2000) Science 289:1757–1760

    Article  CAS  Google Scholar 

  12. Aslan K, Luhrs CC, Perez-Luna VH (2004) J Phys Chem B 108:15631–15639

    Article  CAS  Google Scholar 

  13. Wong AKY, Krull UJ (2005) Anal Bioanal Chem 383:187–200

    Article  CAS  Google Scholar 

  14. Seong GH, Yanagida Y, Aizawa M, Kobatake E (2002) Anal Biochem 309:241–247

    Article  CAS  Google Scholar 

  15. Kasas S, Thomson NH, Smith BL, Hansma HG, Zhu X, Guthold M, Bustamante C, Kool ET, Kashlev M, Hansma PK (1997) Biochemistry 36:461–468

    Article  CAS  Google Scholar 

  16. Lyubchenko YL, Shlyakhtenko LS (1997) Proc Natl Acad Sci USA 94:496–501

    Article  CAS  Google Scholar 

  17. Seong GH, Niimi T, Yanagida Y, Kobatake E, Aizawa M (2000) Anal Chem 72:1288–1293

    Article  CAS  Google Scholar 

  18. Perrin A, Lanet V, Theretz A (1997) Langmuir 13:2557–2563

    Article  CAS  Google Scholar 

  19. Grabar KC, Freeman RG, Hommer MB, Natan MJ (1995) Anal Chem 67:735–743

    Article  CAS  Google Scholar 

  20. Crampton N, Bonass WA, Kirkham J, Thomson NH (2005) Langmuir 21:7884–7891

    Article  CAS  Google Scholar 

  21. Gourishankar A, Shukla S, Pasricha R, Sastry M, Ganesh KN (2005) Curr Appl Phys 5:102–107

    Article  Google Scholar 

  22. Sönnichsen C, Reinhard BM, Liphardt J, Alivisatos AP (2005) Nat Biotechnol 23:741–745

    Article  Google Scholar 

  23. Kiang CH (2003) Physica A 321:164–169

    Article  CAS  Google Scholar 

  24. Aslan K, Lakowicz JR, Geddes CD (2004) Anal Biochem 330:145–155

    Article  CAS  Google Scholar 

  25. Thanh NTK, Rosenzweig Z (2002) Anal Chem 74:1624–1628

    Article  CAS  Google Scholar 

  26. Chah S, Hammond MR, Zare RN (2005) Chem Biol 12:323–328

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by a Korea Research Foundation Grant (KRF-2004-015-C00359).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gi Hun Seong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bui, MP.N., Baek, T.J. & Seong, G.H. Gold nanoparticle aggregation-based highly sensitive DNA detection using atomic force microscopy. Anal Bioanal Chem 388, 1185–1190 (2007). https://doi.org/10.1007/s00216-007-1354-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-007-1354-4

Keywords

Navigation