Skip to main content
Log in

Efficient preparation of amine-modified oligodeoxynucleotide using modified H-phosphonate chemistry for DNA microarray fabrication

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Amine-modified oligodeoxynucleotides (AMO) are commonly used probe oligodeoxynucleotides for DNA microarray preparation. Two methods are currently used for AMO preparation—use of amine phosphoramidites protected by acid-labile monomethoxytrityl (MMT) groups or alkali-labile trifluoroacetyl (TFA) groups. Because conventional AMO preparation procedures have defects, for example stringent acidic conditions are required for deprotection of MMT and hydrophobic purification cannot be used for TFA-protected amino groups, conventional preparation of AMO is unlikely to result in the expected outcome. In this paper a method of AMO synthesis using modified H-phosphonate chemistry is suggested. An aliphatic diamine is coupled with a phosphonate group forming a phosphoramidate linkage to the last internucleotide phosphate of oligodeoxynucleotides. In this method dimethoxytrityl (DMT) purification steps are used and stringent acid deprotection is not required to obtain the AMO. Although the method could lead to formation of AMO diastereomers, melting-temperature and CD analysis showed for two AMO that DNA duplex formation was the same as when normal oligodeoxynucleotides were used. Also, when these AMO were used as probes for DNA microarrays the immobilization efficiency was similar to that for AMO probes prepared by conventional means using an amino-modifier unit. The hybridization performance of these AMO was better than for those prepared conventionally. The procedures suggested would be useful for preparation of efficient AMO for fabrication of DNA microarrays and DNA-based nanoparticle systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Proudnikov D, Timofeev E, Mirzabekov A (1998) Anal Biochem 259:34–41

    Article  CAS  Google Scholar 

  2. Guo Z, Guilfoyle RA, Thiel AJ, Wang R, Smith LM (1994) Nucleic Acids Res 22:5456–5465

    Article  CAS  Google Scholar 

  3. Hacia JG, Woski SA, Fidanza J, Edgemon K, Hunt N, McGall G, Fodor SPA, Collins FS (1998) Nucleic Acids Res 26:4975–4982

    Article  CAS  Google Scholar 

  4. Pollack JR, Perou CM, Alizadeh AA, Eisen MB, Pergamenschikov A, Williams CF, Jeffrey SS, Botstein D, Brown PO (1999) Nat Genet 23:41–46

    Article  CAS  Google Scholar 

  5. Fodor SPA, Read JL, Pirrung MC, Stryer L, Lu AT, Solas D (1991) Science 251:767–773

    Article  CAS  Google Scholar 

  6. Fodor SPA (1997) Science 277:393–395

    Article  CAS  Google Scholar 

  7. Singh-Gasson S, Green RD, Yue Y, Nelson C, Blattner F, Sussman MR, Cerrina F (1999) Nat Biotechnol 17:974–978

    Article  CAS  Google Scholar 

  8. Rogers YH, Baucom PJ, Huang ZJ, Bogdanov V, Anderson S, Boyce-Jacino MT (1999) Anal Biochem 266:23–30

    Article  CAS  Google Scholar 

  9. Lindroos K, Liljedahl U, Raitio M, Syvänen A (2001) Nucleic Acids Res 29:e69

    Article  CAS  Google Scholar 

  10. Joos B, Kuster H, Cone R (1997) Anal Biochem 247:96–101

    Article  CAS  Google Scholar 

  11. Eisen MB, Brown PO (1999) Methods Enzymol 303:179–205

    Article  CAS  Google Scholar 

  12. Burns NL, Vanalstine, JM, Harris JM (1995) Langmuir 11:2768–2776

    Article  CAS  Google Scholar 

  13. Zammatteo N, Jeanmart L, Hamels S, Courtois S, Louette P, Hevesi L, Remacle J (2000) Anal Biochem 280:43–150

    Article  CAS  Google Scholar 

  14. Caviani-Pease A, Solas D, Sullivan EJ, Cronin MT, Holmes CP, Fodor SPA (1994) Proc Natl Acad Sci 91:5022–5026

    Article  Google Scholar 

  15. Agarwal S (1999) Protocols for oligonucleotide conjugates. Humana Press, New Jersey pp. 93–120

    Google Scholar 

  16. Osborne MA, Barnes CL, Balasubramanian S, Klenerman D (2001) J Phys Chem B 105:3120–3126

    Article  CAS  Google Scholar 

  17. Beaucage SL, Iyer RP (1992) Tetrahedron Lett 48:2223–2311

    CAS  Google Scholar 

  18. Tanaka T, Letsienger RL (1982) Nucleic Acids Res 10:3249–3260

    Article  CAS  Google Scholar 

  19. Murakami A, Nakaura M, Nakatsuji Y, Nagahara S, Tran-Cong Q, Makino K (1991) Nucleic Acids Res 19:4097–4102

    Article  CAS  Google Scholar 

  20. Nemer M, Ogilvie K (1980) Tetrahedron Lett 21:4149–4152

    Article  CAS  Google Scholar 

  21. Atherton F, Openshaw H, Todd A (1945) J Chem Soc 660–663

  22. LaPlanche LA, James TL, Powell WD, Wilson B, Uznanski B, Stec WJ, Summers MF, Zon G (1986) Nucleic Acids Res 14:9081–9093

    Article  CAS  Google Scholar 

  23. Kanehara H, Mizuguchi M, Makino K (1996) Nucleos Nucleot 15:399–406

    CAS  Google Scholar 

  24. Sanghvi YS, Cook PD (1994) ACS Symposium series 508

Download references

Acknowledgement

This work is partially supported by Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT), Japan, to K.M. (No. 18350083) and by Grants-in-Aid for regional science and technology promotion the “Kyoto Nanotechnology Cluster” project from MEXT, Japan. This work was also supported by CREST of the Japan Science and Technology Agency. We also thank Yasuko Yoshida and Kazunari Yamada (NGK Insulators Ltd, Geneshot Project, Japan) for providing an ink-jet spotter and image scanners for acquiring quantitative fluorescence data. This work was also supported by the Korean Research Foundation (No. M01-2005-000-10436-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keisuke Makino.

Additional information

Nagendra Kumar Kamisetty and Seung Pil Pack have equally contributed to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kamisetty, N.K., Pack, S.P., Nonogawa, M. et al. Efficient preparation of amine-modified oligodeoxynucleotide using modified H-phosphonate chemistry for DNA microarray fabrication. Anal Bioanal Chem 387, 2027–2035 (2007). https://doi.org/10.1007/s00216-006-1097-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-006-1097-7

Keywords

Navigation