Skip to main content
Log in

Imaging molecular events in single living cells

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Fluorescence imaging could be the most powerful technique available for observing spatial and temporal dynamics of biomolecules in living cells, if fluorescent indicators for the relevant biomolecules become available. We have recently developed fluorescent indicators for a variety of second messengers or protein phosphorylations. Using the indicators, we have visualized spatial and temporal dynamics of these molecular events in single living cells. These fluorescent indicators are becoming an indispensable tool for understanding the complex mechanism of signal transduction in living cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1a–e
Fig. 2a–d
Fig. 3a–d

Similar content being viewed by others

References

  1. Tsien RY (1994) Fluorescence imaging creates a window on the cell. Chem Eng News 18:34–44

    Google Scholar 

  2. Hirano T, Kikuchi K, Urano Y, Higuchi T, Nagano T (2000) Novel zinc fluorescent probes excitable with visible light for biological applications. Angew Chem Int Ed 39:1052–1054

    Article  CAS  Google Scholar 

  3. Kojima H et al (1998) Detection and imaging of nitric oxide with novel fluorescent indicators: diaminofluoresceins. Anal Chem 70:2446–2453

    Article  CAS  Google Scholar 

  4. Tsien RY (1998) The green fluorescent protein. Annu Rev Biochem 67:509–544

    Article  CAS  Google Scholar 

  5. Miyawaki A, Tsien RY (2000) Monitoring protein conformations and interactions by fluorescence resonance energy transfer between mutants of green fluorescent protein. Method Enzymol 327:472–500

    CAS  Google Scholar 

  6. Sato M, Umezawa Y (2004) Imaging protein phosphorylation by fluorescence in single living cells. Methods 32:451–455

    Article  CAS  Google Scholar 

  7. Czech MP (2000) PIP2 and PIP3: complex roles at the cell surface. Cell 100:603–606

    Article  CAS  Google Scholar 

  8. Cantley LC (2002) The phosphoinositide 3-kinase pathway. Science 296:1655–1657

    Article  CAS  Google Scholar 

  9. Varnai P, Rother KI, Balla T (1999) Phosphatidylinositol 3-kinase-dependent membrane association of the Bruton’s tyrosine kinase pleckstrin homology domain visualized in single living cells. J Biol Chem 274:10983–10989

    Article  CAS  Google Scholar 

  10. Venkateswarlu K, Gunn-Moore F, Tavare JM, Cullen PJ (1998) Nerve growth factor- and epidermal growth factor-stimulated translocation of the ADP ribosylation factor-exchange factor GRP1 to the plasma membrane of PC12 cells requires phosphatidylinositol 3-kinase and the GRP1 pleckstrin homology domain. Biochem J 335:139–146

    CAS  Google Scholar 

  11. Watton J, Downward J (1999) Akt/PKB localisation and 3′ phosphoinositide generation at sites of epithelial cell-matrix and cell-cell interaction. Cirr Biol 9:433–436

    Article  CAS  Google Scholar 

  12. Sato M, Ueda Y, Takagi T, Umezawa Y (2003) Production of PtdInsP3 at endomembranes is triggered by receptor endocytosis. Nat Cell Biol 5:1016–1022

    Article  CAS  Google Scholar 

  13. Zhang G, Kazanietz MG, Blumberg PM, Hurley JH (1995) Crystal structure of the Cys2 activator-binding domain of prortein kinase Cδ in complex with phorbol ester. Cell 81:917–924

    Article  CAS  Google Scholar 

  14. Misra S, Miller GJ, Hurley JH (2001) Recognition of phosphatidylinositol 3-phosphate. Cell 107:559–562

    Article  CAS  Google Scholar 

  15. Palmer RM, Ferrige AG, Moncada S (1987) Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327:524–526

    Article  CAS  Google Scholar 

  16. Ignarro LJ, Buga GM, Wood KS, Byrns RE, Chaudhuri G (1987) Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci USA 84:9265–9269

    Article  CAS  Google Scholar 

  17. Ignarro LJ (ed) (2000) Nitric oxide: biology and pathobiology. Academic, London

  18. Leone AM, Furst VW, Foxwell NA, Cellek S, Moncada S (1996) Visualisation of nitric oxide generated by activated murine macrophages. Biochem Biophys Res Commun 221:37–41

    Article  CAS  Google Scholar 

  19. Yoshimura T et al (1996) In vivo EPR detection and imaging of endogenous nitric oxide in lipopolysaccharide-treated mice. Nat Biotechnol 14:992–994

    Article  CAS  Google Scholar 

  20. Malinski T, Mesaros S, Tomboulian P (1996) Nitric oxide measurement using electrochemical methods. Methods Enzymol 268:58–69

    Article  CAS  Google Scholar 

  21. Nagano T, Yoshimura T (2002) Bioimaging of nitric oxide. Chem Rev 102:1235–1269

    Article  CAS  Google Scholar 

  22. Kojima H et al (2001) Bioimaging of nitric oxide with fluorescent indicators based on the rhodamine chromophore. Anal Chem 73:1967–1973

    Article  CAS  Google Scholar 

  23. Gabe Y, Urano Y, Kikuchi K, Kojima H, Nagano T (2004) Highly sensitive fluorescence probes for nitric oxide based on boron dipyrromethene chromophore-rational design of potentially useful bioimaging fluorescence probe. J Am Chem Soc 126:3357–3367

    Article  CAS  Google Scholar 

  24. Sasaki E et al (2005) Highly sensitive near-infrared fluorescent probes for nitric oxide and their application to isolated organs. J Am Chem Soc 127:3684–3685

    Article  CAS  Google Scholar 

  25. Sato M, Hida N, Umezawa Y (2005) Imaging the nanomolar range of nitric oxide with an amplifier-coupled fluorescent indicator in living cells. Proc Natl Acad Sci USA 102:14515–14520

    Article  CAS  Google Scholar 

  26. Koesling D, Russwurm M, Mergia E, Mullershausen F, Friebe A (2004) Nitric oxide-sensitive guanylyl cyclase: structure and regulation. Neurochem Int 45:813–819

    Article  CAS  Google Scholar 

  27. Katsuki S, Arnold W, Mittal C, Murad F (1977) Stimulation of guanylate cyclase by sodium nitroprusside, nitroglycerin and nitric oxide in various tissue preparations and comparison to the effects of sodium azide and hydroxylamine. J Cyclic Nucl Res 3:23–35

    Google Scholar 

  28. Sato M, Hida N, Ozawa T, Umezawa Y (2000) Fluorescent indicators for cyclic GMP based on cyclic GMP-dependent protein kinase Ialpha and green fluorescent proteins. Anal Chem 72:5918–5924

    Article  CAS  Google Scholar 

  29. Freyberger A, Ahr HJ (2004) Development and standardization of a simple binding assay for the detection of compounds with affinity for the androgen receptor. Toxicology 195:113–126

    Article  CAS  Google Scholar 

  30. Sohoni P, Sumpter JP (1998) Several environmental oestrogens are also anti-androgens. J Endocrinol 158:327–339

    Article  CAS  Google Scholar 

  31. Awais M, Sato M, Lee X, Umezawa Y (2004) A genetically encoded fluorescent indicator capable of discriminating estrogen agonists from antagonists in living cells. Anal Chem 76:2181–2186

    Article  CAS  Google Scholar 

  32. Awais M, Sato M, Lee X, Umezawa Y (2006) A fluorescent indicator to visualize activities of the androgen receptor ligands in single living cells. Angew Chem Int Ed 45:2707–2712

    Article  CAS  Google Scholar 

  33. Sato M, Ozawa T, Inukai K, Asano T, Umezawa Y (2002) Fluorescent indicators for imaging protein phosphorylation in single living cells. Nat Biotechnol 20:287–294

    Article  CAS  Google Scholar 

  34. Sasaki K, Sato M, Umezawa Y (2003) Fluorescent indicators for Akt/Protein Kinase B and dynamics of Akt activity visualized in living cells. J Biol Chem 1:1–2

    Google Scholar 

Download references

Acknowledgements

This work has been supported by JST Japan Science and Technology Agency and grants from the Ministry of Education, Science, and Culture of Japan, the Takeda Science Foundation, and the Sumitomo Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moritoshi Sato.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sato, M. Imaging molecular events in single living cells. Anal Bioanal Chem 386, 435–443 (2006). https://doi.org/10.1007/s00216-006-0716-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-006-0716-7

Keywords

Navigation