Skip to main content
Log in

Synthetic musk fragrances in environmental Standard Reference Materials

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Synthetic musk fragrances have been measured in water, air, sediments, sewage sludge, and biota worldwide. As the study of the environmental fate and impacts of these compounds progresses, the need for Standard Reference Materials (SRMs) for these compounds to facilitate analytical method improvement and interlaboratory comparisons becomes increasingly important. The National Institute of Standards and Technology (NIST) issues environmental matrix SRMs with certified concentrations for a variety of persistent organic pollutants including polycyclic aromatic hydrocarbons (PAHs), chlorinated pesticides, and polychlorinated biphenyl congeners (PCBs). Until now synthetic musk fragrance concentrations have not been reported in NIST SRMs. The objective of this study was to provide reference values for several commonly detected synthetic musk fragrances in several NIST natural matrix SRMs. In this study five polycyclic musk fragrances [HHCB (1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethylcyclopenta-γ-2-benzopyran), AHTN (7-acetyl-1,1,3,4,4,6-hexamethyl-1,2,3,4-tetrahydronaphthalene), ADBI (4-acetyl-1,1-dimethyl-6-tert-butylindane), AHMI (6-acetyl-1,1,2,3,3,5-hexamethylindane), and ATII (5-acetyl-1,1,2,6-tetramethyl-3-isopropylindane] and two nitro musk fragrances [musk xylene (1-tert-butyl-3,5-dimethyl-2,4,6-trinitrobenzene) and musk ketone (4-tert-butyl-3,5-dinitro-2,6-dimethylacetophenone)] were measured in selected environmental SRMs. Gas chromatography–electron impact mass spectrometry (GC/EI-MS) was used for all analyses. HHCB was the most frequently detected synthetic musk fragrance and was detected in SRM 2585 Organic Contaminants in House Dust, SRM 2781 Domestic Sludge, SRM 1974b Organics in Mussel Tissue (Mytilus edulis), and SRM 1947 Lake Michigan Fish Tissue. It was not detected in SRM 1946 Lake Superior Fish Tissue or SRM 1945 Organics in Whale Blubber. Concentrations of HHCB in these SRMs ranged from 1.12 ng/g in SRM 1947 to 92,901 ng/g in SRM 2781. All of the polycyclic musk fragrances were detected in SRM 2781 and all of the target compounds were detected in SRM 2585.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Peck AM, Hornbuckle KC (2004) Environ Sci Technol 38:367–372

    Article  CAS  Google Scholar 

  2. Fromme H, Lahrz T, Piloty M, Gebhart H, Oddoy A, Ruden H (2004) Indoor Air 14:188–195

    Article  CAS  Google Scholar 

  3. Kallenborn R, Gatermann R, Planting S, Rimkus GG, Lund M, Schlabach M, Burkow IC (1999) J Chromatogr A 846:295–306

    Article  CAS  Google Scholar 

  4. Winkler M, Headley JV, Peru KM (2000) J Chromatogr A 903:203–210

    Article  CAS  Google Scholar 

  5. Buerge IJ, Buser HR, Muller MD, Poiger T (2003) Environ Sci Technol 37:5636–5644

    Article  CAS  Google Scholar 

  6. Simonich SL, Federle TW, Eckhoff WS, Rottiers A, Webb S, Sabaliunas D, De Wolf W (2002) Environ Sci Technol 36:2839–2847

    Article  CAS  Google Scholar 

  7. Simonich SL, Begley WM, Debaere G, Eckhoff WS (2000) Environ Sci Technol 34:959–965

    Article  CAS  Google Scholar 

  8. Ricking M, Schwarzbauer J, Hellou J, Svenson A, Zitko V (2003) Mar Pollut Bull 46:410–417

    Article  CAS  Google Scholar 

  9. Heberer T, These A (2000) Abstr Pap Am Chem S 219:U624–U624

    Google Scholar 

  10. Fromme H, Otto T, Pilz K, Neugebauer F (1999) Chemosphere 39:1723–1735

    Article  CAS  Google Scholar 

  11. Kupper T, Berset JD, Etter-Holzer R, Furrer R, Tarradellas J (2004) Chemosphere 54:1111–1120

    Article  CAS  Google Scholar 

  12. Difrancesco AM, Chiu PC, Standley LJ, Allen HE, Salvito DT (2004) Environ Sci Technol 38:194–201

    Article  CAS  Google Scholar 

  13. Stevens JL, Northcott GL, Stern GA, Tomy GT, Jones KC (2003) Environ Sci Technol 37:462–467

    Article  CAS  Google Scholar 

  14. Ternes TA, Bonerz M, Herrmann N, Loffler D, Keller E, Lacida BB, Alder AC (2005) J Chromatogr A 1067:213–223

    Article  CAS  Google Scholar 

  15. Bester K (2004) Chemosphere 57:863–870

    Article  CAS  Google Scholar 

  16. Lee HB, Peart TE, Sarafin K (2003) Water Qual Res J Can 38:683–702

    CAS  Google Scholar 

  17. Nakata H (2005) Environ Sci Technol 39:3430–3434

    Article  CAS  Google Scholar 

  18. Osemwengie LI, Steinberg S (2003) J Chromatogr A 993:1–15

    Article  CAS  Google Scholar 

  19. Kallenborn R, Gatermann R, Nygard T, Knutzen J, Schlabach M (2001) Fresen Environ Bull 10:832–842

    CAS  Google Scholar 

  20. Gatermann R, Hellou J, Huhnerfuss H, Rimkus G, Zitko V (1999) Chemosphere 38:3431–3441

    Article  CAS  Google Scholar 

  21. Seinen W, Lemmen JG, Pieters RH, Verbruggen EM, van der Burg B (1999) Toxicol Lett 111:161–168

    Article  CAS  Google Scholar 

  22. Bitsch N, Dudas C, Korner W, Failing K, Biselli S, Rimkus G, Brunn H (2002) Arch Environ Contam Toxicol 43:257–264

    Article  CAS  Google Scholar 

  23. Luckenbach T, Epel D (2005) Environ Health Persp 113:17–24

    Article  CAS  Google Scholar 

  24. Luckenbach T, Ilaria C, Epel D (2004) Mar Environ Res 58:215–219

    Article  CAS  Google Scholar 

  25. Bester K (2005) J Environ Monitor 7:43–51

    Article  CAS  Google Scholar 

  26. Osemwengie LI, Steinberg S (2001) J Chromatogr A 932:107–118

    Article  CAS  Google Scholar 

  27. Osemwengie LI, Gerstenberger SL (2004) J Environ Monitor 6:533–539

    Article  CAS  Google Scholar 

  28. Kannan K, Reiner JL, Yun SH, Perrotta EE, Tao L, Johnson-Restrepo B, Rodan BD (2005) Chemosphere 61:693–700

    Article  CAS  Google Scholar 

  29. Yang J-J, Metcalfe CD (206) Sci Total Environ 363:149–165

    Google Scholar 

  30. Bester K, Huhnerfuss H, Lange W, Rimkus GG, Theobald N (1998) Water Res 32:1857–1863

    Article  CAS  Google Scholar 

  31. Rimkus GG (1999) Toxicol Lett 111:37–56

    Article  CAS  Google Scholar 

  32. Berset JD, Bigler P, Herren D (2000) Anal Chem 72:2124–2131

    Article  CAS  Google Scholar 

  33. Gatermann R, Huhnerfuss H, Rimkus G, Attar A, Kettrup A (1998) Chemosphere 36:2535–2547

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Bill Lee at the National Water Research Institute and Mike Welch at the National Institute of Standards and Technology for helpful comments on the manuscript.

Disclaimer

Certain commercial equipment, instruments, or materials are identified in this paper to specify adequately the experimental procedure. Such identification does not imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the materials or equipment identified are necessarily the best for the purpose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aaron M. Peck.

Electronic supplementary material (ESM)

Below is the link to the electronic supplementary material.

Table S1

(DOC 28 kb)

Table S2

(DOC 28 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peck, A.M., Kucklick, J.R. & Schantz, M.M. Synthetic musk fragrances in environmental Standard Reference Materials. Anal Bioanal Chem 387, 2381–2388 (2007). https://doi.org/10.1007/s00216-006-0671-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-006-0671-3

Keywords

Navigation