Skip to main content

Advertisement

Log in

Determination of phenols in waters using micro-pumped multicommutation and spectrophotometric detection: an automated alternative to the standard procedure

  • Technical Note
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

An automated and greener spectrophotometric procedure has been developed for the determination of phenol in water at 700 nm. The method uses the reaction between phenol, sodium nitroprusside, and hydroxylamine hydrochloride in a buffered medium at pH 12.3. The flow manifold comprises four solenoid micro-pumps employed for sample and reagent introduction into the reaction coil and to transport the colored product formed to the detector. The linear dynamic range was 50–3,500 ng mL−1 (R = 0.99997; n = 6) and the method provided a limit of detection (3σ) of 13 ng mL−1. The sampling throughput was estimated to be 65 measurements per hour and the coefficient of variation was 0.5% (n = 10) for a 1.0 μg mL−1 phenol concentration. Recoveries of 92–105% were obtained for phenol determination in spiked water samples at concentration levels from 50 to 5,000 ng mL−1. The use of multicommutation reduced the reagent consumption 25-fold, the sample consumption 225-fold, and the waste generation 30-fold compared with the batch procedure. The proposed method is an environmentally friendly alternative to the official 4-aminoantipyrine method since it avoids the use of chloroform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Normas Provinciales de Calidad y Control de Agua para Bebida. Di PAS 608/93. Spain

  2. Standard test methods for phenolic compounds in water (1990) D 1783–87. Section 11.02 water. Annual book of ASTM standards

  3. Frenzel W, Krekler S (1995) Anal Chim Acta 310:437

    Article  CAS  Google Scholar 

  4. Lapa RAS, Lima JLFC, Pinto IVOS (2000) Analusis 28:295

    Article  CAS  Google Scholar 

  5. Lupetti KO, Rocha FRP, Fatibello-Filho O (2004) Talanta 62:463

    Article  CAS  Google Scholar 

  6. Goulden PD, Brooksbank P, Day MB (1973) Anal Chem 45:2430

    Article  CAS  Google Scholar 

  7. Bosch F, Font G, Mañes J (1987) Analyst 112:1335

    Article  PubMed  CAS  Google Scholar 

  8. Koch S, Ackermann G, Lindner P (1992) Talanta 39:693

    Article  CAS  Google Scholar 

  9. Álvarez-Rodríguez L, Esteve-Romero J, Escrib-Tena I, García C (1999) J AOAC Int 82:937

    PubMed  Google Scholar 

  10. Ruedas MJ, Ruíz A, Molina A (2003) Microchim Acta 141:143

    Article  Google Scholar 

  11. Christophersen MJ, Cardwell TJ (1996) Anal Chim Acta 323:39

    Article  CAS  Google Scholar 

  12. Tao R, Fan C (1983) Fenxi Huaxue 11:463

    CAS  Google Scholar 

  13. Amlathe S, Upadhyay S, Gupta VK (1987) Analyst 110:1463

    Article  Google Scholar 

  14. Nagaraj P, Bhandari JM, Achar BN Indian (1993) J Chem 32A:641

    CAS  Google Scholar 

  15. Kang C, Wang Y, Li R, Du Y, Li J, Zhang B, Zhou L, Du Y (2000) Microchem J 64 :161

    Article  CAS  Google Scholar 

  16. Lavorante AF, Morales-Rubio A, de la Guardia M, Reis BF (2005) Anal Bioanal Chem 381:1305

    Article  PubMed  CAS  Google Scholar 

  17. Lima JLFC, Santos JLM, Dias ACB, Ribeiro MFT, Zagatto EAG (2004) Talanta 64:1091

    Article  CAS  Google Scholar 

  18. Ródenas-Torralba E, Reis BF, Morales-Rubio A, de la Guardia M (2005) Talanta 66:591

    Article  CAS  Google Scholar 

  19. Frenzel W, Frenzel JO, Möller J (1992) Anal Chim Acta 261:253

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from the Ministerio de Educación, Cultura y Deporte (Spain), ref. PHB2002-0054-PC and the grant supported by “CINC SEGLES” from the Universitat de València (Spain).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ángel Morales-Rubio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ródenas-Torralba, E., Morales-Rubio, Á. & Guardia, M.d.l. Determination of phenols in waters using micro-pumped multicommutation and spectrophotometric detection: an automated alternative to the standard procedure. Anal Bioanal Chem 383, 138–144 (2005). https://doi.org/10.1007/s00216-005-3416-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-005-3416-9

Keywords

Navigation