Skip to main content
Log in

Catalytic adsorptive stripping voltammetric determination of copper(II) on a carbon paste electrode

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A catalytic adsorptive stripping voltammetric method for the determination of copper(II) on a carbon paste electrode (PCE) in an alizarin red S (ARS)-K2S2O8 system is proposed. In this method, copper(II) is effectively enriched by both the formation and adsorption of a copper(II)-ARS complex on the PCE, and is determined by catalytic stripping voltammetry. The catalytic enhancement of the cathodic stripping current of the Cu(II) in the complex results from a redox cycle consisting of electrochemical reduction of Cu(II) ion in the complex and subsequent chemical oxidation of the Cu(II) reduction product by persulfate, which reduces the contamination of the working electrode from Cu deposition and also improves analytical sensitivity. In Britton-Robinson buffer (pH 4.56±0.1) containing 3.6×10−5 mol L−1 ARS and 1.6×10−3 mol L−1 K2S2O8, with 180 s of accumulation at −0.2 V, the second-order derivative peak current of the catalytic stripping wave was proportional to the copper(II) concentration in the range of 8.0×10−10 to ∼3.0×10−8 mol L−1. The detection limit was 1.6×10−10 mol L−1. The proposed method was evaluated by analyzing copper in water and soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a–b
Fig. 2
Sch 1
Fig. 3a–b
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. WHO (1982) Evaluation of certain food additives and contaminants (WHO Technical Report Series no. 683). WHO, Geneva

  2. Brett CMA, Garcia MBQ, Lima JLFC (1997) Anal Chim Acta 339:167–172

    Article  CAS  Google Scholar 

  3. Brainina KhZ, Stozhko NYu, Belysheva GM, Inzhevatova OV, Kolyadina LI, Cremisini C, Galletti M (2004) Anal Chim Acta 514:227–234

    Article  CAS  Google Scholar 

  4. Suteerapataranon S, Jakmunee J, Vaneesorn Y, Grudpan K (2002) Talanta 8:1235–1242

    Article  Google Scholar 

  5. Ensafi AA, Khayamian T, Khaloo SS (2004) Anal Chim Acta 505:201–207

    Article  CAS  Google Scholar 

  6. Safavi A, Shams E (1999) Anal Chim Acta 385:265–272

    Article  CAS  Google Scholar 

  7. Jin L, Gogan NJ (2000) Anal Chim Acta 412:77–88

    Article  CAS  Google Scholar 

  8. Giroussi ST, Voulgaropoulos AN, Ayiannidis A (1997) Fresen J Anal Chem 357:429–432

    Article  CAS  Google Scholar 

  9. van den Berg CMG (1986) J Electroanal Chem 217:111–121

    Article  Google Scholar 

  10. Yarnitzky Ch, Schreiber-Stanger R (1986) J Electroanal Chem 214:65–78

    Article  CAS  Google Scholar 

  11. Quentel F, Madec C (1990) Anal Chim Acta 230:83–90

    Article  CAS  Google Scholar 

  12. Culjak I, Mlakar M, Branica M (1994) Anal Chim Acta 297:427–435

    Article  CAS  Google Scholar 

  13. Alemu H, Chandravanshi BS (1998) Anal Chim Acta 368:165–173

    Article  CAS  Google Scholar 

  14. Shams E, Babaei A, Soltaninezhad M (2004) Anal Chim Acta 501:119–124

    Article  CAS  Google Scholar 

  15. Hajian R, Shams E (2003) Anal Chim Acta 491:63–69

    Article  CAS  Google Scholar 

  16. Ensafi AA, Abbasi S (2000) Microchem J 64:195–200

    Article  CAS  Google Scholar 

  17. Lu GH, Long DW, Li DH, Zhan T, Zhao HY, Liu CY (2004) Food Chem 84:319–322

    Article  CAS  Google Scholar 

  18. Bobrowski A, Zarebski J (2000) Electroanalysis 12:1177–1186

    Article  CAS  Google Scholar 

  19. Czae MZ, Wang J (1999) Talanta 50:921–928

    Article  CAS  Google Scholar 

  20. Dai HP, Shiu KK (1998) Electrochim Acta 43:2709–2715

    Article  CAS  Google Scholar 

  21. Quentel F, Elleouet C, Madec C (1994) Electroanalysis 6:683–688

    Article  CAS  Google Scholar 

  22. Shiu KK, Chan OY (1995) J Electroanal Chem 388:45–51

    Article  Google Scholar 

  23. Kalcher K, Kauffmann JM, Wang J, Svancara I, Vytras K, Neuhold C, Yang Z (1995) Electroanalysis 7:5–10

    Article  CAS  Google Scholar 

  24. Ravichandran K, Baldwin RP (1984) Anal Chem 56:1744–1747

    Article  CAS  Google Scholar 

  25. SEPA (1987) Water quality–determination of copper, zinc, lead and cadmium: atomic absorption spectrometry (Chinese Standard, No: GB 7475–87). State Environmental Protection Administration, Beijing, pp 3

  26. Zhang J, Li JN, Deng PH (2001) Talanta 54:561–566

    Article  CAS  Google Scholar 

  27. Laviron E (1974) J Electroanal Chem 52:355–393

    Article  CAS  Google Scholar 

  28. Brown AP, Anson FC (1977) Anal Chem 49:1589–1594

    Article  CAS  Google Scholar 

  29. Zhang ZX, Tu YF (1985) Chem J Chin Univ 6:403–408

    CAS  Google Scholar 

  30. Nicholson RS, Shain I (1964) Anal Chem 36:706–723

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author wishes to thank the National Natural Science Foundation of R. P. China (grant no. 20475043) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-Feng Song.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, N., Song, JF. Catalytic adsorptive stripping voltammetric determination of copper(II) on a carbon paste electrode. Anal Bioanal Chem 383, 358–364 (2005). https://doi.org/10.1007/s00216-005-3412-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-005-3412-0

Keywords

Navigation