Skip to main content
Log in

Optochemical sensor for determining ozone based on novel soluble indigo dyes immobilised in a highly permeable polymeric film

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

An optochemical ozone sensor is described that has been manufactured by immobilisation of novel soluble indigo derivatives in permeable transparent polymeric films of polydimethylsiloxane–polycarbonate copolymer. From a number of investigated indigo derivatives, 4,4′,7,7′-tetraalkoxyindigo 9 has been selected for optimal sensitivity and specificity of ozone detection. A linear calibration for ozone can be obtained in the range between 0.01 and 0.5 ppm. The limit of quantitation is 0.03 ppm, and the accuracy exceeds 8%. It takes about 134 s to measure the relatively low occupational exposure concentration of 0.1 ppm. A reduction of the sensor response time could be achieved through application of double-sided coated sensors instead of single-sided variants. The stability of the sensors and the effect of external parameters like relative humidity (RH), temperature and gas flow on the sensor response have been investigated. The sensor response is affected by varying the gas flow or temperature; however, humidity in the range between 0 and 90% RH does not affect sensor response. The indigo derivative 9 remained stable inside the polymeric film and no chemical reaction, crystallisation or leaching occurred during 10 months of observation. Proper choice of indicator dye and polymeric material and successful application of kinetic evaluation method for the exposure experiments determine the desired features of the sensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Parish DD, Fehsenfeld FC (2000) Atmos Environ 34:1921–1957

    Article  Google Scholar 

  2. Manning WJ, Krupa SV, Bergweiler CJ, Nelson KI (1996) Environ Pollut 3:399–403

    Article  Google Scholar 

  3. Geyh AS, Wolfson JM, Koutrakis P, Mulik JD, Avol EL (1997) Environ Sci Technol 31:2326–2330

    Article  CAS  Google Scholar 

  4. Koutrakis P, Wolfson JM, Bunyaviroch A, Froehlich SE, Hirano K, Mulik JD (1993) Anal Chem 65:209–214

    Article  CAS  Google Scholar 

  5. Bernard NL, Gerber MJ, Astre CM, Sainot MJ (1999) Environ Sci Technol 33:217–222

    Article  CAS  Google Scholar 

  6. Scheeren BA, Adema EH (1996) Water Air Soil Pollut 91:335–350

    Article  CAS  Google Scholar 

  7. Bader H, Hogine J (1981) J Water Res 15:449–456

    Article  CAS  Google Scholar 

  8. Takeuchi K, Ibisuki T (1989) Anal Chem 61:619–623

    Article  CAS  PubMed  Google Scholar 

  9. Takeuchi K, Kutsuna S, Ibusuki T (1990) Anal Chim Acta 230:183–187

    Article  CAS  Google Scholar 

  10. Collard RS, Pryor WA (1979) Anal Chim Acta 108:255–260

    Article  CAS  Google Scholar 

  11. Schurath U, Speuser W, Schmidt R (1991) Fresenius J Anal Chem 340:544–547

    Article  CAS  Google Scholar 

  12. Sauter D, Weimar U, Noetzel G, Mitrovics J, Göpel W (2000) Sens Actuators B 69:1–9

    Article  Google Scholar 

  13. Kim SR, Hong HK, Kwon CH, Yun DH, Lee K, Sung YK (2000) Sens Actuators B 66:59–62

    Article  Google Scholar 

  14. Qu W, Wlodarski W (2000) Sens Actuators B 64:42–48

    Article  Google Scholar 

  15. Cantalini C, Wlodarski W, Li Y, Passacantando M, Cantucci S, Comini E, Faglia G, Sberveglieri G (2000) Sens Actuators B 64:182–188

    Article  Google Scholar 

  16. Schütze A, Pieper N, Zacheja J (1995) Sens Actuators B 23:215–217

    Article  Google Scholar 

  17. Bouvert M, Guillaud G, Leroy A, Maillard A, Spirkovitch S, Tournilhac FG (2001) Sens Actuators B 73:63–70

    Article  Google Scholar 

  18. Bouvert M, Leroy A, Simon J, Tournilhac F, Guillaud G, Lessnick P, Maillard A, Spirkovitch S, Debliquy M, DeHaan A, Decroly A (2001) Sens Actuators B 72:86–93

    Article  Google Scholar 

  19. Voss G, Gradzielski M, Heinze J, Reinke H, Unverzagt C (2003) Helv Chim Acta 86:1982–2004

    Article  CAS  Google Scholar 

  20. Pèrez-Bendito D, Silva M (1988) Kinetical methods in analytical chemistry. Wiley, New York

    Google Scholar 

  21. Baron MG, Narayanaswamy R, Thrope SC (1995) Sens Actuators B 29:358–362

    Article  Google Scholar 

  22. Ralfs M, Heinze J (1997) Sens Actuators B 44:257–261

    Article  Google Scholar 

  23. Criegee R (1953) Justus Liebigs Ann Chem 583:1–36

    CAS  Google Scholar 

  24. Holt SJ, Sadler PW (1958) Proc R Soc Lond Ser B 148B:495–499

    Google Scholar 

  25. Holleman AF, Wiberg N (1995) Lehrbuch der anorganischen Chemie. de Gruyter, Berlin

    Google Scholar 

  26. Lüttke W, Klessinger M (1964) Chem Ber 97:2342–2357

    Google Scholar 

  27. Kromidas S (1999) Validierung in der Analytik. Wiley-VCH, Weinheim

    Google Scholar 

Download references

Acknowledgements

Financial support by the German Research Foundation (DFG) and the Fonds der Chemischen Industrie is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Heinze.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alexy, M., Voss, G. & Heinze, J. Optochemical sensor for determining ozone based on novel soluble indigo dyes immobilised in a highly permeable polymeric film. Anal Bioanal Chem 382, 1628–1641 (2005). https://doi.org/10.1007/s00216-005-3291-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-005-3291-4

Keywords

Navigation