Skip to main content
Log in

Extraction of p-hydroxyacetophenone and catechin from Norway spruce needles. Comparison of different extraction solvents

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The phenolic compounds p-hydroxyacetophenone and catechin have been extracted from Norway spruce needles with pure methanol, 80 and 50% (v/v) aqueous methanol, pure acetonitrile, 80% (v/v) aqueous acetonitrile, and pure water. Extraction efficiency of the individual solvents was compared. Although 80% aqueous methanol is the solvent most frequently used for extraction of soluble phenolic compounds from needles, it was found that pure methanol is a more suitable extraction solvent. Surprisingly, a two-step procedure based on the extraction of crushed needles with water then re-extraction with methanol proved a good alternative to direct extraction with methanol. Extraction of uncrushed spruce needles might indicate that relatively more p-hydroxyacetophenone than catechin was located in the surface layer of the needle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kähkönen MP, Hopia AI, Vuorela HJ, Rauha JP, Pihlaja K, Kujala TS, Heinonen M (1999) J Agric Food Chem 47:3954–3962

    Article  PubMed  Google Scholar 

  2. Siddhuraju P, Becker K (2003) J Agric Food Chem 51:2144–2155

    Article  CAS  PubMed  Google Scholar 

  3. Kirakosyan A, Seymour E, Kaufman PB, Warber S, Bolling S, Chang SC (2003) J Agric Food Chem 51:3973–3976

    Article  CAS  PubMed  Google Scholar 

  4. Bahnweg G, Schubert R, Kehr RD, Muller-Starck G, Heller W, Langebartels C, Sandermann H (2000) Trees 14:435–441

    Article  Google Scholar 

  5. Osswald WF, Blaurock B, Herrgesell E (1994) Acta Hort 381:548–556

    CAS  Google Scholar 

  6. Pasquier-Barre F, Palasse C, Goussard F, Auger-Rozenberg MA, Geri C (2001) Environ Entomol 30:1–6

    Google Scholar 

  7. Hoque E (1984) Phytochemistry 23:923–925

    Article  CAS  Google Scholar 

  8. Hoque E (1985) Eur J For Pathol 15:129–145

    CAS  Google Scholar 

  9. Hoque E (1986) J Chromatogr 360:452–458

    Article  CAS  Google Scholar 

  10. Osswald WF, Benz B (1989) Eur J For Pathol 19:323–334

    Google Scholar 

  11. Jensen JS, Lokke H (1990) Z Pflanzenkh pflanzenschutz 97:328–338

    CAS  Google Scholar 

  12. Lokke H (1990) Ecotoxicol Environ Saf 19:301–309

    Article  CAS  PubMed  Google Scholar 

  13. Richter CM, Wild A (1992) Biochem Physiol Pflanzen 18:305–320

    Google Scholar 

  14. Richter CM, Wild A (1994) Z Naturforsch 49c:619–627

    CAS  Google Scholar 

  15. Richter CM, Eis U, Wild A (1996) Z Naturforsch 51c:53–58

    CAS  Google Scholar 

  16. Slimestad R, Andersen OM, Francis GW, Marston A, Hostettmann K (1995) Phytochemistry 40:1537–1542

    Article  CAS  Google Scholar 

  17. Härtling S, Schulz HZ (1998) Naturforsch 53c:331–340

    Google Scholar 

  18. Fischbach RJ, Kossmann B, Panten H, Steinbrecher R, Heller W, Seidlitz HK, Sandermann H, Hertkorn N, Schnitzler P (1999) Plant Cell Environ 22:27–37

    Article  CAS  Google Scholar 

  19. Warren JM, Bassman JH, Mattinson DS, Fellman JK, Edwards GE, Robberecht R (2002) J Photochem Photobiol B: Biol 66:125–133

    Google Scholar 

  20. Hoque E (1984) Eur J Forest Pathol 14:377–382

    CAS  Google Scholar 

  21. Bianco J, Dalstein L (1999) Tree Physiol 19:787–791

    CAS  PubMed  Google Scholar 

  22. Kraus K, Spiteller G (1997) Phytochemistry 44:59–67

    Article  CAS  Google Scholar 

  23. Sallas L, Vuorinen M, Kainulainen P, Holopainen JK (1999) Scand J Forest Res 14:218–266

    Article  Google Scholar 

  24. Soukupova J, Rock BN, Albrechtova J (2001) N Phytol 150:133–145

    Article  CAS  Google Scholar 

  25. Strack D, Heilemann J, Wray V, Dirks H (1989) Phytochemistry 28:2071–2078

    Article  CAS  Google Scholar 

  26. Hoque E, Remus G (1999) Photochem Photobiol 69:177–192

    Article  CAS  Google Scholar 

  27. Kainulainen P, Holopainen JK, Holopainen T (2000) J Environ Qual 29:334–342

    CAS  Google Scholar 

  28. Kinnunen H, Huttunen S, Laakso K (2001) Pollut 112:215–220

    Article  CAS  Google Scholar 

  29. Sallas L, Kainulainen P, Utriainen J, Holopainen T, Holopainen JK (2001) Global Change Biol 7:303–311

    Article  Google Scholar 

  30. Oleszek W, Stochmal A, Karolewski P, Simonet AM, Macias FA, Tava A (2002) Biochem Syst Ecol 30:1011–1022

    Article  CAS  Google Scholar 

  31. Gallet C, Lebreton P (1995) Soil Biol Biochem 27:157–165

    Google Scholar 

  32. Gallet C, Pellissier F (1997) J Chem Ecol 23:2401–2412

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful for the financial support of this study by the Ministry of Education of the Czech Republic, project MSM6046137307. This work was also supported by the Grant Agency of the Czech Republic, project 206/05/0269.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Sýkora.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vosmanská, M., Sýkora, D., Fähnrich, J. et al. Extraction of p-hydroxyacetophenone and catechin from Norway spruce needles. Comparison of different extraction solvents. Anal Bioanal Chem 382, 1135–1140 (2005). https://doi.org/10.1007/s00216-005-3229-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-005-3229-x

Keywords

Navigation