Skip to main content
Log in

Determination of hexavalent chromium by using speciated isotope-dilution mass spectrometry after microwave speciated extraction of environmental and other solid materials

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Precise and accurate determination of hexavalent chromium in different types of solid environmental sample is regarded as a technical challenge with significant potential error if historically accepted methods are used. Microwave-assisted alkaline extraction (0.5 mol L−1 NaOH+0.28 mol L−1 Na2CO3) followed by anion-exchange chromatographic separation and inductively coupled plasma mass spectrophotometric detection has been shown to provide accurate and precise results. To obtain a better understanding of potential species conversion during and/or after extraction steps, speciated isotope-dilution mass spectrometry (SIDMS) (EPA Method 6800) metrology has been successfully applied as a diagnostic tool with the modified accompanying extraction version of EPA Method 3060A. In our study, aggregate materials distributed over a large area of a major western US state were found to contain a high concentration of total chromium (195±13 to 709±19 μg g−1) and significant amounts of Cr6+ (141±6 to 341±29 μg g−1) which are at least three orders of magnitude higher than the US EPA threshold limit (0.5 μg g−1). Sediment samples from a major western US state, studied independently, were found to contain less (1.77±0.34 μg g−1) or no Cr6+ in the presence of significant total chromium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Li Y, Pradhan NK, Foley R, Low GKC (2002) Talanta 57(6):1143–1153

    Article  CAS  Google Scholar 

  2. Wang J, Ashley K, Kennedy ER, Neumeister C (1997) Analyst 122(11):1307–1312

    Article  CAS  PubMed  Google Scholar 

  3. Marques MJ, Salvador A, Morales-Rubio AE, de la Guardia M (1998) Fresenius J Anal Chem 362(3):239–248

    Article  CAS  Google Scholar 

  4. Ndung’u K, Djane N-K, Malcus F, Mathiasson L (1999) Analyst 124(9):1367–1372

    Article  Google Scholar 

  5. Nriagu JO, Nieboer E (eds) (1988) Advances in environmental science and technology (vol 20: Chromium in the natural and human environments). Wiley, New York

    Google Scholar 

  6. Weckhuysen BM, Wachs IE, Schoonheydt RA (1996) Chem Rev 96(8):3327–3349

    Article  CAS  PubMed  Google Scholar 

  7. Vitale RJ, Mussoline GR, Rinehimer KA, Petura JC, James BR (1997) Environ Sci Technol 31(2):390–394

    Article  CAS  Google Scholar 

  8. Vitale RJ, Mussoline GR, Petura JC, James BR (1994) J Environ Qual 23(6):1249–1256

    CAS  Google Scholar 

  9. Flores-Velez LM, Gutierrez-Ruiz ME, Reyes-Salas O, Cram-Heydrich S, Baeza-Reyes A (1995) Int J Environ Anal Chem 61(3):177–187

    CAS  Google Scholar 

  10. Prokisch J, Kovacs B, Gyori Z, Loch J (1995) Commun Soil Sci Plant Anal 26(13–14):2051–2065

    CAS  Google Scholar 

  11. Prokisch J, Kovacs B, Gyori Z, Loch J (1994) J Chromatogr A 683(1):253–260

    Article  CAS  Google Scholar 

  12. Sabty-Daily RA, Luk KK, Froines JR (2002) Analyst 127(6):852–858

    Article  CAS  PubMed  Google Scholar 

  13. Luque-Garcia JL, Luque de Castro MD (2002) Analyst 127(8):1115–1120

    Article  CAS  PubMed  Google Scholar 

  14. Foy GP, Pacey GE (2000) Talanta 51(2):339–347

    Article  CAS  Google Scholar 

  15. USEPA (1996) Method 3060A, alkaline digestion for hexavalent chromium. Tests methods for evaluating solid waste, physical/chemical methods SW 846, US Government Printing Office (GPO): Washington, DC

  16. Rao TP, Karthikeyan S, Vijayalekshmy B, Iyer CSP (1998) Anal Chim Acta 369(1–2):69–77

    Article  Google Scholar 

  17. Tirez K, Brusten W, Cluyts A, Patyn J, De Brucker N (2003) J Anal At Spectrom 18:922–932

    Article  CAS  Google Scholar 

  18. USEPA (2004) Method 6800, elemental and speciated isotope-dilution mass spectrometry, tests methods for evaluating solid waste, physical/chemical methods SW 846, Update IVA. US Government Printing Office (GPO), Washington, DC

  19. USEPA (2004) Draft Method 3200, Mercury species separation by selective solvent extraction and acid digestion. US Government Printing Office (GPO), Washington, DC

  20. Federal Register (1998) 63(89):25430–25438

  21. Kingston HM (1995) US Patent 5:414–259

    Google Scholar 

  22. Kingston HM (2004) US Patent 6:790–673B1

    Google Scholar 

  23. Huo D, Kingston HM (2000) Anal Chem 72(20):5047–5054

    Article  CAS  PubMed  Google Scholar 

  24. Kingston HM, Huo D, Lu Y, Chalk S (1998) Spectrochim Acta Part B 53(2):299–309

    Article  Google Scholar 

  25. Huo D, Lu Y, Kingston HM (1998) Environ Sci Technol 32(21):3418

    Article  CAS  Google Scholar 

  26. Huo D (1999) PhD Thesis. Duquesne University, Pittsburgh, PA, USA

  27. Caruso JA, Sutton KL, Ackley KL (2000) Comprehensive analytical chemistry, Chap. 10 (Elemental speciation: new approaches for trace element analysis, vol 33) (eds). Elsevier, New York

  28. Kingston HM, Huo D, Rahman GMM, Iyer S, Walter P (2004) SamplePrep Web, Available: http://www.sampleprep.duq.edu/

  29. Rahman GMM, Kingston HMS (2004) Anal Chem 76(13):3548–3555

    Article  CAS  PubMed  Google Scholar 

  30. USEPA (1996) Method 3052, microwave assisted acid digestion of siliceous and organically based matrices, tests methods for evaluating solid waste, physical/chemical methods SW 846. US Government Printing Office (GPO), Washington, DC

  31. Marques MJ, Salvador A, Morales-Rubio A, de la Guardia M (2000) Fresenius J Anal Chem 367(7):601–613

    Article  CAS  PubMed  Google Scholar 

  32. James BR, Petura JC, Vitale RJ, Mussoline GR (1995) Environ Sci Technol 29(9):2377–2381

    CAS  Google Scholar 

  33. Kingston HM, Haswell SJ (1997) Microwave enhanced chemistry: fundamentals, sample preparation, and applications ACS professional reference book series. American Chemical Society, Washington, DC, pp 223–349

    Google Scholar 

  34. Rudel H, Terytze K (1999) Chemosphere 39(4):697–708

    Article  CAS  Google Scholar 

  35. Taylor HE (2001) Inductively coupled plasma-mass spectrometry: practices and techniques. Academic, San Diego, p 48

    Google Scholar 

  36. Elemental VG (1989) VG plasmaquad system manual. VG Elemental Ltd, Winsford, England

    Google Scholar 

  37. Jarvis KE, Gray AL, Houk RS (1992) Handbook of inductively coupled plasma mass spectrometry. Blackie Academic& Professional, London, p 315

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Environmental Standards Inc. and the Department of Chemistry and Biochemistry, Duquesne University, for funding and financial support, and Milestone Inc., Agilent Technologies Inc., and Duquesne University for instrumentation and material support. Portions of the methodology in this paper are patented and/or patent pending.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. M. Mizanur Rahman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rahman, G.M.M., Kingston, H.M.S., Towns, T.G. et al. Determination of hexavalent chromium by using speciated isotope-dilution mass spectrometry after microwave speciated extraction of environmental and other solid materials. Anal Bioanal Chem 382, 1111–1120 (2005). https://doi.org/10.1007/s00216-005-3203-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-005-3203-7

Keywords

Navigation