Skip to main content
Log in

Critical review of the application of liquid chromatography/mass spectrometry to the determination of pesticide residues in biological samples

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A critical review is made on the use of hyphenated liquid chromatography/mass spectrometry (LC–MS) for the identification and quantification of pesticides and their metabolites in human biosamples (whole blood, plasma, serum and urine). The first applications of LC–MS in this field began in the early 1990s. Since then, increasing interest has been shown in applying this powerful technique, with most applications dealing with the determination of a variety of chemically diverse metabolites in urine. The use of different LC–MS interfaces and mass spectral detection modes are discussed. Special attention is given to tandem mass spectrometry (MS/MS) due to its inherent advantages of increased sensitivity and selectivity, as well as its advantages for identification and confirmation of analytes in samples. Quantification can be severely affected by matrix effects, the most common being inhibition of the ionisation of analytes in the mass spectrometer, which leads to unacceptable errors if no correction is made. Different approaches can be employed to minimise this undesirable matrix effect, the preferred being the use of labelled internal standards (when available) in isotope dilution methods or the application of an efficient clean-up, performed off-line or automated on-line. Adequate criteria for confirming the identities of residues detected are required in order to avoid false positives. The criterion most commonly used with a triple quadrupole instrument is the monitoring of two MS/MS transitions together with the ion abundance ratio. TOF mass analysers are seldom used in pesticide residue analysis despite their improved resolution and mass accuracy characteristics, which makes them very suitable for confirmation purposes. The main reasons for the relative unpopularity of TOF MS in residue analysis are its limited sensitivity and its high acquisition cost. In this paper, we present a critical assessment on current techniques, trends and future developments, and give illustrative examples to point out the main characteristics of LC–MS for pesticide residue analysis in biological fluids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2a–b
Fig. 3a–b
Fig. 4a–b

Similar content being viewed by others

References

  1. Barr DB, Needham LL (2002) J Chromatogr B 778:5

    Article  CAS  Google Scholar 

  2. Barr JR, Driskell WJ, Hill RH, Ashley DL, Needham LL, Head SL, Sampson EJ, Barr DB (1999) Toxicol Ind Health 15:169

    Article  Google Scholar 

  3. Aprea C, Colosio C, Mammone T, Minoia C, Maroni M (2002) J Chromatogr B 769:191

    Article  CAS  Google Scholar 

  4. Hernández F, Pitarch E, Serrano R, Gaspar JV, Olea N (2002) J Anal Toxicol 26:94

    PubMed  Google Scholar 

  5. Pitarch E, Serrano R, López FJ, Hernández F (2003) Anal Bioanal Chem 376:189

    CAS  PubMed  Google Scholar 

  6. Maurer HH (1998) J Chromatogr B 713:3

    CAS  Google Scholar 

  7. Kumazawa T, Suzuki O (2000) J Chromatogr B 747:241

    CAS  Google Scholar 

  8. Naidong W (2003) J Chromatogr B 796:209

    Article  CAS  Google Scholar 

  9. Sancho JV, Pozo OJ, Hernández F (2000) Rapid Commun Mass Sp 14:1485

    Article  CAS  Google Scholar 

  10. Marin A, Martínez Vidal JL, Egea González FJ, Garrido Frenich A, Glass CR, Sykes M (2004) J Chromatogr B 804:269

    Article  CAS  Google Scholar 

  11. Pozzebon JM, Vilegas W, Jardim ISCF (2003) J Chromatogr A 987:375

    Article  CAS  PubMed  Google Scholar 

  12. Zang LY, DeHaven J, Yocum A, Qiao G (2002) J Chromatogr B 767:93

    CAS  Google Scholar 

  13. Hernández F, Sancho JV, Pozo OJ (2004) J Chromatogr B 808:229

    Article  Google Scholar 

  14. Sottani C, Bettinelli M, Fiorentino ML, Minoia C (2003) Rapid Commun Mass Sp 17:2253

    Article  CAS  Google Scholar 

  15. Cech NB, Enke CG (2001) Mass Spectrom Rev 20:362

    CAS  PubMed  Google Scholar 

  16. Schmidt TC, Buetehorn U, Steinbach K (2004) Anal Bioanal Chem 378:926

    Article  CAS  PubMed  Google Scholar 

  17. Holpacek M, Volna K, Jandera P, Kolarova L, Lemr K, Exner M, Cirkva A (2004) J Mass Spectrom 39:43

    Article  PubMed  Google Scholar 

  18. Hernández F, Sancho JV, Pozo OJ (2002) Rapid Commun Mass Sp 16:1766

    Article  Google Scholar 

  19. Olsson OA, Baker SE, Nguyen JV, Romanoff LC, Udunka SO, Walker RD, Flemmen KT, Barr DA (2004) Anal Chem 76:2453

    Article  CAS  PubMed  Google Scholar 

  20. Sancho JV, Pozo OJ, López FJ, Hernández F (2002) Rapid Commun Mass Sp 16:639

    Article  CAS  Google Scholar 

  21. Kurttio P, Vartiainen K, Auriola S (1992) J Anal Toxicol 16:85

    CAS  PubMed  Google Scholar 

  22. Katagi M, Tatsuno M, Tsuchihashi H (1994) Jpn J Toxicol Environ Health 40:357

    CAS  Google Scholar 

  23. Kawasaki S, Ueda H, Itoh H, Tadano J (1992) J Chromatogr 595:193

    Article  CAS  PubMed  Google Scholar 

  24. Itoh H, Kawasaki S, Tadano J (1996) J Chromatogr A 754:61

    Article  CAS  Google Scholar 

  25. Pelander A, Ojanpera I, Laks S, Rasanen I, Vuori E (2003) Anal Chem 75:5710

    Article  CAS  PubMed  Google Scholar 

  26. Driskell WJ, Hill RH, Shealy DB, Hull RD, Hines CJ (1996) B Environ Contam Tox 56:853

    Article  CAS  Google Scholar 

  27. Olsson AO, Nguyen JV, Sadowski MA, Barr DA (2003) Anal Bioanal Chem 376:808

    Article  CAS  PubMed  Google Scholar 

  28. Matuszewski BK, Constanzer ML, Chavez-Eng CM (1998) Anal Chem 70:882

    Article  CAS  PubMed  Google Scholar 

  29. Antignac JP, de Wasch K, Monteau F, de Brabander H, Andre F, Le Bizec B (2005) Anal Chim Acta 529:129

    Article  CAS  Google Scholar 

  30. Buhrman DL, Price PI, Rudewicz PJ (1996) J Am Soc Mass Spectrom 7:1099

    Article  CAS  Google Scholar 

  31. Hill RH, Lead SL, Baker S, Gregg M, Shealy DB, Bailey SL, Williams CC, Sampson EJ, Needham LL (1995) Environ Res 71:99

    CAS  PubMed  Google Scholar 

  32. Lyubimov AV, Garry VF, Carlson RE, Barr DA, Baker SE (2000) J Lab Clin Med 136:116

    Article  CAS  PubMed  Google Scholar 

  33. Martínez Fernández J, Parrilla Vázquez P, Martínez Vidal JL (2000) Anal Chim Acta 412:131

    Article  Google Scholar 

  34. Driskell WJ, Groce DF, Hill RH (1991) J Anal Toxicol 15:339

    CAS  PubMed  Google Scholar 

  35. Reetsma T (2003) J Chromatogr A 1000:477

    Article  PubMed  Google Scholar 

  36. European Community (2002) Commission Decision 2002/657/CE of 12 August 2002. EC, Brussels

  37. Hernández F, Ibáñez M, Sancho JV, Pozo OJ (2004) Anal Chem 76:4349

    Article  PubMed  Google Scholar 

  38. Stolker AAM, Dijkman E, Niesing W, Hogendoorn EA (2003) Identification of residues by LC/MS/MS according to the new European Union guidelines: application to the trace analysis of veterinary drugs and contaminants in biological and environmental matrices, in liquid chromatography/mass spectrometry, MS/MS and time-of-flight MS: analysis of emerging contaminants. Ferrer I, Thurman EM (eds) ACS Symposium Series 850. American Chemical Society, New York

  39. Lacassie E, Marquet P, Gaulier JM, Dreyfuss MF, Lachatre G (2001) Forensic Sci Int 121:116

    Article  CAS  PubMed  Google Scholar 

  40. Barr DB, Turner WE, DiPietro E, McClure PC, Baker SE, Barr JR, Gehle K, Grissom RE Jr, Bravo R, Driskell WJ, Patterson DG Jr, Hill RH, Needham LL, Pirkle JL, Sampson EJ (2002) Environ Health Persp 110:1085

    CAS  Google Scholar 

  41. Ibáñez M, Sancho JV, Pozo OJ, Hernández F (2004) Anal Chem 76:1328

    Article  PubMed  Google Scholar 

  42. Ibáñez M, Sancho JV, Pozo OJ, Niessen W, Hernández F (2005) Rapid Commun Mass Sp 19:169

    Article  Google Scholar 

  43. Decaestecker TN, Vande Casteele SR, Wallemacq PE, Van Peteghem CH, Defore DL, Van Bocxlaer JF (2004) Anal Chem 76:6365

    Article  CAS  PubMed  Google Scholar 

  44. Baker SE, Olsson AO, Barr DB (2004) Arch Environ Contam Toxicol 46:281

    Article  CAS  PubMed  Google Scholar 

  45. Gergov M, Ojanpera I, Vuori E (2003) J Chromatogr B 795:41

    Article  CAS  Google Scholar 

  46. Martínez JM, Martínez Vidal JL, Vazquez PP, Frenich AG (2001) Chromatographia 53:503

    Google Scholar 

  47. Baker SE, Barr DB, Driskell WJ, Beeson MD, Needham LL (2000) J Expo Anal Env Epid 10:789

    CAS  Google Scholar 

  48. Beeson MD, Driskell WJ, Barr DB (1999) Anal Chem 71:3526

    Article  CAS  PubMed  Google Scholar 

  49. Driskell WJ, Hill RH (1997) B Environ Contam Tox 58:929

    Article  CAS  Google Scholar 

  50. Kawasaki S, Nagumo F, Ueda H, Tajima Y, Sano M, Tadano J (1993) J Chromatogr 620:61

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Hernández.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hernández, F., Sancho, J.V. & Pozo, O.J. Critical review of the application of liquid chromatography/mass spectrometry to the determination of pesticide residues in biological samples. Anal Bioanal Chem 382, 934–946 (2005). https://doi.org/10.1007/s00216-005-3185-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-005-3185-5

Keywords

Navigation