Skip to main content

Advertisement

Log in

An electro-osmotic micro-pump based on monolithic silica for micro-flow analyses and electro-sprays

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A high-pressure electro-osmotic micro-pump fabricated by a sol–gel process is reported as a fluid-driving unit in a flow-injection analysis (FIA) system. The micro FIA system consists of a monolithic micro-pump on a glass slide (2.5×7.5 cm), a micro-injector, and a micro-sensor (2.5×1.5 cm). The monolithic silica matrix has a continuous skeleton morphology with micrometer-sized through-pores. The micrometer-size pores with a large negative surface charge density build up a large pressure under a DC electric field to drive fluid through the downstream units. A novel Nafion joint for the downstream cathode eliminates flow into the electrode reservoir and further enhances pressure build-up. The measured pump-pressure curve indicated a maximum pressure of 0.4 MPa at flow rate of 0.4 μL min−1 at 6 kV. Despite the large voltage, the small current transmission area through the monolith produced a negligible current (less than 100 μA) that did not generate bubbles or ion contaminants. The flow rate can be precisely controlled in the range 200 nL to 2.5 μL min−1 by varying the voltage from 1 to 6 kV. The high pump pressure and the large current-free DC field also enabled the pump to act as an electro-spray interface with a downstream analytical instrument.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chen CH, Santiago JG (2002) J Microelectromech Syst 11:672–683

    Google Scholar 

  2. Zeng S, Chen CH, Mikkelsen JC, Santiago JG (2001) Sens Actuators B 79:107–114

    Google Scholar 

  3. Morf WE, Guenat OT, Rooij NF (2001) Sens Actuators B 72:266–272

    Google Scholar 

  4. Darabi J, Rada M, Ohadi MM, Lawler J (2002) J Microelectromech Syst 11:684–690

    Google Scholar 

  5. Lemoff AV, Lee AP (2000) Sens Actuators B 63:178–185

    Google Scholar 

  6. Laser DJ, Santiago JG (2004) J Micromech Microeng 14:R35–R64

    Google Scholar 

  7. Chen L, Ma J, Guan Y (2003) Microchem J 75:15–21

    Google Scholar 

  8. Liu S, Dasgupta PK (1992) Anal Chim Acta 268:1–6

    Google Scholar 

  9. Lazar IM, Karger BL (2002) Anal Chem 74(24):6259–6268

    Google Scholar 

  10. Lazar IM, Ramsey RS, Jacobson SC, Foote RS, Ramsey JM (2000) J Chromatogr A 892:195–201

    Google Scholar 

  11. Lastochkin D, Zhou R, Wang P, Ben Y, Chang H–C (2004) J Appl Phys 96:1730–1733

    Google Scholar 

  12. Minerick AR, Ostafin AE, Chang H-C (2002) Electrophoresis 23:2165

    Google Scholar 

  13. Mutlu S, Yu C, Selvaganapathy P, Svec F, Mastrangelo CH, Frechet JMJ (2002) In: Proceedings of the IEEE MEMS 2002 Conference, Las Vegas, USA, Jan 20–24, pp 19–24

  14. Razunguzwa TT, Timperman AT (2004) Anal Chem 76:1336–1341

    Google Scholar 

  15. Tripp JA, Svec F, Frechet JMJ, Zeng SL, Mikkelsen JC, Santiago JG (2004) Sens Actuators B 99:66–73

    Google Scholar 

  16. Nakanishi KJ (1997) Porous Mater 4:67–112

    Google Scholar 

  17. Tanaka N, Kobayashi H, Nakanishi K, Minakuchi H, Ishizuka N (2001) Anal Chem 73(15):420A–429A

    CAS  PubMed  Google Scholar 

  18. Chen Z, Hobo T (2001) Anal Chem 73:3348–3357

    Google Scholar 

  19. Chen Z, Hobo T (2001) Electrophoresis 22:3339–3346

    Google Scholar 

  20. Chen Z, Ozawa H, Uchiyama K, Hobo T (2003) Electrophoresis 24:2550–2558

    Google Scholar 

  21. Chen Z, Nishiyama T, Uchiyama K, Hobo T (2004) Anal Chim Acta 501:17–23

    Google Scholar 

  22. Chen Z, Uchiyama K, Hobo T (2002) J Chromatogr A 924:83–91

    Google Scholar 

  23. Chen Z, Hayashi K, Ywasaki Y, Kurita R, Niwa O, Sunagawa K (2005) Electroanalysis 17:231–238

    Google Scholar 

  24. Yeo LY, Lastochkin D, Wang SC, Chang H-C (2004) Phys Rev Lett 92:133902–133904

    Google Scholar 

  25. Lasen G, Velarde-Ortiz R, Minchow K, Barrero A, Loscertales LG (2003) J Am Chem Soc 125:1154–1155

    Google Scholar 

  26. Loscertales IG, Barrero A, Guerrero I, Cortijo R, Marquez M, Ganan-Calvo AM (2002) Science 295:1695

    Google Scholar 

Download references

Acknowledgments

We thank Dr Albert E. Miller, University of Notre Dame, for use of his electrochemical instrument; Dr William Boggess, University of Notre Dame, for the injector used in this study, and Mr Katsuyashi Hayashi, NTT Microsystem Integration Labs, for valuable discussion on the sensor. This work is supported by the Center for Microfluidics and Medical Diagnostics at the University of Notre Dame.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zilin Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Z., Wang, P. & Chang, HC. An electro-osmotic micro-pump based on monolithic silica for micro-flow analyses and electro-sprays. Anal Bioanal Chem 382, 817–824 (2005). https://doi.org/10.1007/s00216-005-3130-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-005-3130-7

Keywords

Navigation