Skip to main content
Log in

Multivariate curve resolution: a method of evaluating the kinetics of biotechnological reactions

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In biotechnology, strong emphasis is placed on the development of wet chemical analysis and chromatography to separate target components from a complex matrix. In bioprocessing, the development of single compound biosensors is an important activity. The advantages of these techniques are their high sensitivity and specificity. Inline or online monitoring by means of spectroscopy has the potential to be used as an “all-in-one” analysis technique for biotechnological studies, but it lacks specificity. Multivariate curve resolution (MCR) can be used to overcome this limitation. MCR is able to extract the number of components involved in a complex spectral feature, to attribute the resulting spectra to chemical compounds, to quantify the individual spectral contributions, and to use this quantification to develop kinetic models for the process with or without a priori knowledge. After a short introduction to MCR, two applications are presented. In the first example, the spectral features of hemp are monitored and analysed during growth. MCR provides unperturbed spectra on the activity of, for example, lignin and cellulose during plant development. In a second example, the kinetics of a laccase enzyme-catalysed degradation of aromatic hydrocarbons are calculated from UV/VIS spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Chalmers JM (2000) Spectroscopy in process analysis. CRC, London

    Google Scholar 

  2. Nijhuis A, de Jong S, Vandeginste BGM (1997) Chemom Intell Lab Syst 38:51–62

    Article  CAS  Google Scholar 

  3. Despagne F, Massart DL, Chabot P (2000) Anal Chem 72:1657–1665

    Article  PubMed  CAS  Google Scholar 

  4. Gampp H, Maeder M, Meyer C, Zuberbuhler AD (1986) Talanta 33:943–951

    Article  CAS  Google Scholar 

  5. Keller HR, Massart DL (1991) Anal Chim Acta 246:379–390

    Article  CAS  Google Scholar 

  6. Malinowski ER (2002) Factor analysis in chemistry, 3rd edn. Wiley, New York

    Google Scholar 

  7. Bijlsma S, Smilde AK (1999) Anal Chim Acta 396:231–240

    Article  CAS  Google Scholar 

  8. Shrager RI (1986) Chemom Intell Lab Syst 1:59–70

    Article  CAS  Google Scholar 

  9. Tauler R (1995) Chemom Intell Lab Syst 30:133–146

    Article  CAS  Google Scholar 

  10. Tauler R, Smilde A, Kowalski BR (1995) J Chemom 9:31–58

    Article  CAS  Google Scholar 

  11. de Juan A, Maeder M, Martínez M, Tauler R (2000) Chemom Intell Lab Syst 54:49–67

    Article  Google Scholar 

  12. Bijlsma S, Smilde AK (2000) J Chemom 14:541–560

    Article  CAS  Google Scholar 

  13. Mendieta J, Diaz-Cruz MS, Esteban M, Tauler R (1998) Biophys J 74:2876–2888

    Article  PubMed  CAS  Google Scholar 

  14. Ma B, Gemperline PJ, Cash E, Bosserman M, Comas E (2003) J Chemom 17:470–479

    Article  CAS  Google Scholar 

  15. Bijlsma S, Boelens HFM, Hoefsloot HCJ, Smilde AK (2000) Anal Chim Acta 419:197–207

    Article  CAS  Google Scholar 

  16. Reijmers TH, Maliepaard C, van den Broeck H, Kessler RW, Toonen MA, van der Voet H (2005) J Bioinform Comput Biol 3:891–913

    Article  PubMed  CAS  Google Scholar 

  17. Izquierdo-Ridorsa A, Gargallo R, Casassas E (1993) Anal Chim Acta 283:538–547

    Article  Google Scholar 

  18. Toonen M, Maliepaard C, Reijmers TH, van der Voet H, Mastebroe HD, van den Broeck H, Ebskamp MJM, Kessler W, Kessler RW (2004) Euphytika 140:39–45

    Article  CAS  Google Scholar 

  19. Morrison WH, Archibald DD, Sharma HSS, Akin DE (2000) Ind Crops Prod 12:39–46

    Article  CAS  Google Scholar 

  20. Kandelbauer A, Maute O, Kessler RW, Erlacher A, Gübitz G (2004) Biotechnol Bioeng 87(4):552–563

    Article  PubMed  CAS  Google Scholar 

  21. Akin DE, Himmelsbach DS, Morrison III WH (2000) J Polym Environ 8:103–109

    Article  CAS  Google Scholar 

  22. Akin DE, Gamble GR, Morrison WH ,Rigsby LL, Dodd RB (1996) J Sci Food Agric 72:155–165

    Article  CAS  Google Scholar 

  23. Mauser H, Gauglitz G (eds) (1998) Photokinetics. In: Comprehensive chemical kinetics 36. Elsevier, Amsterdam

  24. Cavaco-Paulo A, Gübitz GM (eds) (2003) Textile processing with enzymes. CRC, Cambridge

    Google Scholar 

  25. Lacki L, Duvnjak Z (2000) Biotechnol Bioeng 57:694–703

    Article  Google Scholar 

  26. Ryohei I, Sugihara J, Uvama H, Kobayashi S (1999) Polym Int 47:295

    Google Scholar 

Download references

Acknowledgements

Part of the research described in this paper was carried out as part of the HARMONIA project of the EC (Hemp as Raw Material for Novel Industrial Applications; QLK5-CT-1999-01505). The authors gratefully acknowledge the contribution of Plant Research International, PRI, The Netherlands, which provided all the hemp samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. W. Kessler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kessler, W., Kessler, R.W. Multivariate curve resolution: a method of evaluating the kinetics of biotechnological reactions. Anal Bioanal Chem 384, 1087–1095 (2006). https://doi.org/10.1007/s00216-005-0077-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-005-0077-7

Keywords

Navigation