Skip to main content
Log in

Discrimination of three tobacco types (Burley, Virginia and Oriental) by pyrolysis single-photon ionisation–time-of-flight mass spectrometry and advanced statistical methods

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Pyrolysis single-photon ionisation (SPI)–time-of-flight mass spectrometry (TOFMS) and statistical analysis techniques have been applied to differentiate three major tobacco types, Burley, Virginia and Oriental, by means of the gas phase. SPI is known as a soft ionisation technique that allows fast and comprehensive on-line monitoring of a large variety of aliphatic and aromatic substances without fragmentation of the molecule ions. The tobacco samples were pyrolysed at 800°C in a nitrogen atmosphere. The resulting pyrolysis gas contained signals from more than 70 masses between m/z 5 and 170. Mass spectra obtained were analysed by principal component analysis (PCA) and linear discriminant analysis (LDA) to distinguish between different tobacco types. Prior variable reduction of the data set was carried out by calculation of the Fisher ratios. Results achieved give information about chemical composition and characteristics of the smoke derived from each tobacco type and enable conclusions on plant cultivation to be drawn. Based on LDA, a model for tobacco type recognition of unknown samples was established, which was cross-checked by additional measurements of each tobacco type. Furthermore, first results on the recognition of tobacco mixtures based on principal component regression (PCR) are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Blazsó M (1997) J Anal Appl Pyrolysis 39:1

    Google Scholar 

  2. Wampler TP (1999) J Chromatogr A 842:207

    Article  CAS  PubMed  Google Scholar 

  3. Wampler TP (2004) J Anal Appl Pyrolysis 71:1

    Google Scholar 

  4. Meuzelaar HLC, Windig W, Harper AM, Huff SM, McClennen WH, Richards JM (1984) Science 226:268

    CAS  PubMed  Google Scholar 

  5. Brown AL, Dayton DC, Nimlos MR, Daily JW (2001) Chemosphere 42:663

    Article  CAS  PubMed  Google Scholar 

  6. Dorfner R, Ferge T, Yeretzian C, Kettrup A, Zimmermann R (2004) Anal Chem 76:1386

    Article  CAS  PubMed  Google Scholar 

  7. Mühlberger F, Zimmermann R, Kettrup A (2001) Anal Chem 73:3590

    Article  PubMed  Google Scholar 

  8. Cao L, Mühlberger F, Adam T, Streibel T, Wang HZ, Kettrup A, Zimmermann R (2003) Anal Chem 75:5639

    Article  CAS  PubMed  Google Scholar 

  9. Mühlberger F, Hafner K, Kaessdorf S, Ferge T, Zimmermann R (2004) Anal Chem 76:6753

    Google Scholar 

  10. Baker RR (1987) J Anal Appl Pyrolysis 11:555

    Article  CAS  Google Scholar 

  11. Stedman RL (1968) Chem Rev 68:153

    CAS  PubMed  Google Scholar 

  12. Schlotzhauer WS, Chortyk OT (1987) J Anal Appl Pyrolysis 12:193

    Article  CAS  Google Scholar 

  13. Baker RR, Bishop LJ (2004) J Anal Appl Pyrolysis 71:223

    Article  CAS  Google Scholar 

  14. Shin E-J, Hajaligol MR, Rasouli F (2003) J Anal Appl Pyrolysis 68–69:213

    Article  Google Scholar 

  15. Simmleit N, Schulten H-R (1986) Fresenius J Anal Chem 324:9

    Article  CAS  Google Scholar 

  16. Schulten H-R (1986) Beitr Tabakforsch 13:219

    Google Scholar 

  17. Halket JM (1985) J Anal Appl Pyrolysis 8:547

    Article  CAS  Google Scholar 

  18. Zimmermann R, Heger HJ, Kettrup A (1999) Fresenius J Anal Chem 363:720

    Article  CAS  Google Scholar 

  19. Zimmermann R, Dorfner R, Kettrup A (1999) J Anal Appl Pyrolysis 49:257

    Article  CAS  Google Scholar 

  20. Gilchrist SN (1999) In: Davis DEL, Nielsen MR (eds) Tobacco: production, chemistry, and technology. Blackwell, Oxford, p 154

  21. Peedin GF (1999) In: Davis DEL, Nielsen MR (eds) Tobacco: production, chemistry, and technology. Blackwell, Oxford, p 104

  22. Palmer GK, Pearce RC (1999) In: Davis DEL, Nielsen MR (eds) Tobacco: production, chemistry, and technology. Blackwell, Oxford, p 143

  23. Shaw AD, di Camillo A, Vlahov G, Jones A, Bianchi G, Rowland J, Kell DB (1997) Anal Chim Acta 348:357

    Article  CAS  Google Scholar 

  24. Krishnan S, Samudravijaya K, Rao PVS (1996) Pattern Recognit Lett 17:803

    Article  Google Scholar 

  25. Lavine B, Workman JJ (2004) Anal Chem 76:3365

    Article  CAS  PubMed  Google Scholar 

  26. Duarte I, Barros A, Belton PS, Righelato R, Spraul M, Humpfer E, Gil AM (2002) J Agric Food Chem 50:2475

    Article  CAS  PubMed  Google Scholar 

  27. Maeztu L, Sanz C, Andueza S, Peña MPd, Bello J, Cid C (2001) J Agric Food Chem 49:5437

    Article  CAS  PubMed  Google Scholar 

  28. Héberger K, Csomós E, Simon-Sarkadi L (2003) J Agric Food Chem 51:8055

    Article  PubMed  Google Scholar 

  29. Cocchi M, Foca G, Lucisano M, Marchetti A, Pagani MA, Tassi L, Ulrici A (2004) J Agric Food Chem 52:1062

    Article  CAS  PubMed  Google Scholar 

  30. Cordella C, Moussa I, Martel A-C, Sbirrazzuoli N, Lizzani-Cuvelier L (2002) J Agric Food Chem 50:1751

    Article  CAS  PubMed  Google Scholar 

  31. Bucci R, Magrí AD, Magrí AL, Marini D, Marini F (2002) J Agric Food Chem 50:413

    Article  CAS  PubMed  Google Scholar 

  32. Biasioli F, Gasperi F, Aprea E, Mott D, Boscaini E, Mayr D, Märk TD (2003) J Agric Food Chem 51:7227

    Article  CAS  PubMed  Google Scholar 

  33. Marini F, Balestieri F, Bucci R, Magri AD, Magri AL, Marini D (2004) Chemometrics and Intelligent Laboratory Systems (in press)

  34. Brereton RG (2000) Analyst 125:2125

    Article  CAS  Google Scholar 

  35. Baker RR (2002) Beitr Tabakforsc 20:23

    Google Scholar 

  36. Fisher R (1936) Ann Eugenics 7:179

    Google Scholar 

  37. Duda RO, Hart PE (1973) Pattern classification and scene analysis. Wiley, New York

    Google Scholar 

  38. Jolliffe IT (1986) Principal component analysis. Springer, Berlin Heidelberg New York

    Google Scholar 

  39. Günzler H (1998) Analytiker Taschenbuch. Springer, Berlin Heidelberg New York

    Google Scholar 

  40. Wold S (1987) Chemom Intell Lab Syst 2:37

    Article  CAS  Google Scholar 

  41. Martinez A, Kak A (2001) IEEE Trans Pattern Anal Mach Intell 23:228

    Article  Google Scholar 

  42. McLachlan GJ (1992) Discriminant analysis and statistical pattern recognition. Wiley, New York

    Google Scholar 

  43. Adam T, Streibel T, Mitschke S, Mühlberger F, Cao L, Baker RR, Zimmermann R (2005) J Anal Appl Pyrolysis (in press)

  44. Scheijen MA, Boer BB-d, Boon J (1989) Beitr Tabakforsch 14:261

    CAS  Google Scholar 

  45. Seeman JI, Dixon M, Haussmann H-J (2002) Chem Res Toxicol 15:1331

    Article  CAS  PubMed  Google Scholar 

  46. Severson RF, Schlotzhauer WS, Arrendale RF, Snook ME, Higman HC (1977) Beitr Tabakforsc 9:23

    CAS  Google Scholar 

  47. Schmeltz I, Schlotzhauer WS, Higman EB (1972) Beitr Tabakforsc 6:134

    CAS  Google Scholar 

  48. Wynder EL, Hoffmann D (1967) Tobacco and tobacco smoke. Studies in experimental carcinogenesis. Academic, New York

    Google Scholar 

  49. Bokelman GH, Ryan WS (1985) Beitr Tabakforsc 13:29

    CAS  Google Scholar 

  50. Im H, Rasouli F, Hajaligol M (2003) J Anal Appl Pyrolysis 51:7366

    CAS  Google Scholar 

  51. Baker RR, Kilburn KD (1973) Beitr Tabakforsch 7:79

    CAS  Google Scholar 

  52. Schlotzhauer WS, Arrendale RF, Chortyk OT (1985) Beitr Tabakforsch 13:74

    CAS  Google Scholar 

  53. Schulten H-J (1984) J Anal Appl Pyrolysis 6:251

    Article  CAS  Google Scholar 

  54. Stotesbury SS (1999) Beitr Tabakforsch 18:147

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Zimmermann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adam, T., Ferge, T., Mitschke, S. et al. Discrimination of three tobacco types (Burley, Virginia and Oriental) by pyrolysis single-photon ionisation–time-of-flight mass spectrometry and advanced statistical methods. Anal Bioanal Chem 381, 487–499 (2005). https://doi.org/10.1007/s00216-004-2935-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-004-2935-0

Keywords

Navigation