Skip to main content
Log in

Interpreting conformational effects in protein nano-ESI-MS spectra

  • Special Issue Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Nano-electrospray-ionization mass spectrometry (nano-ESI-MS) is employed here to describe equilibrium protein conformational transitions and to analyze the influence of instrumental settings, pH, and solvent surface tension on the charge-state distributions (CSD). A first set of experiments shows that high flow rates of N2 as curtain gas can induce unfolding of cytochrome c (cyt c) and myoglobin (Mb), under conditions in which the stability of the native protein structure has already been reduced by acidification. However, it is possible to identify conditions under which the instrumental settings are not limiting factors for the conformational stability of the protein inside ESI droplets. Under such conditions, equilibrium unfolding transitions described by ESI-MS are comparable with those obtained by other established biophysical methods. Experiments with the very stable proteins ubiquitin (Ubq) and lysozyme (Lyz) enable testing of the influence of extreme pH changes on the ESI process, uncoupled from acid-induced unfolding. When HCl is used for acidification, Ubq and Lyz mass spectra do not change between pH~7 and pH 2.2, indicating that the CSD is highly characteristic of a given protein conformation and not directly affected by even large pH changes. Use of formic or acetic acid for acidification of Ubq solutions results in major spectral changes that can be interpreted in terms of protein unfolding as a result of the increased hydrophobicity of the solvent. On the other hand, Lyz, cyt c, and Mb enable direct comparison of protein CSD (corresponding to either the folded or the unfolded protein) in HCl or acetic acid solutions at low pH. The values of surface tension for these solutions differ significantly. Confirming indications already present in the literature, we observe very similar CSD under these solvent conditions for several proteins in either compact or disordered conformations. The same is true for comparison between water and water–acetic acid for folded cyt c and Lyz. Thus, protein CSD from water–acetic solutions do not seem to be limited by the low surface tension of acetic acid as previously suggested. This result could reflect a general lack of dependence of protein CSD on the surface tension of the solvent. However, it is also possible that the effect of acetic acid on the precursor ESI droplets is smaller than generally assumed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chowdhury SK, Katta V, Chait BT (1990) J Am Chem Soc 112:9012–9013

    CAS  Google Scholar 

  2. Katta V, Chait BT (1991) J Am Chem Soc 113:8534–8535

    CAS  Google Scholar 

  3. Grandori R (2003) Curr Org Chem 7:1–15

    Article  Google Scholar 

  4. Mann M (1990) Org Mass Spectrom 25:575–587

    CAS  Google Scholar 

  5. Konermann L, Rosell FI, Mauk AG, Douglas DJ (1997) Biochemistry 36:6448–6454

    Article  CAS  PubMed  Google Scholar 

  6. Grandori R (2002) Protein Sci 11:453–458

    Article  CAS  PubMed  Google Scholar 

  7. Vis H, Heinemann U, Dobson CM, Robinson CV (1998) J Am Chem Soc 120:6427–6428

    Article  CAS  Google Scholar 

  8. Simmons DA, Konermann L (2002) Biochemistry 41:1906–1914

    Article  CAS  PubMed  Google Scholar 

  9. Konermann L, Douglas DJ (1997) Biochemistry 36:12296–12302

    Article  CAS  PubMed  Google Scholar 

  10. Grandori R, Matečko I, Müller N (2001) J Mass Spectrom 37:191–196

    Article  Google Scholar 

  11. Wang G, Cole RB (1997) in Electrospray Ionization Mass Spectrometry (Cole RB, Ed) John Wiley & Sons, New York p 137–174

  12. Apostol I (1999) Anal Biochem 272:8–18

    Article  CAS  PubMed  Google Scholar 

  13. Mirza UA (1993) Anal Chem 65:1–6

    CAS  PubMed  Google Scholar 

  14. Winston RL, Fitzgerald MC (1997) Mass Spectrom Rev 16:165–179

    Article  CAS  PubMed  Google Scholar 

  15. Fligge TA, Przybylski M, Quinn JP, Marshall AG (1998) Eur Mass Spectrom 4:401–404

    CAS  Google Scholar 

  16. Matečko I, Müller N, Grandori R (2002) Spectroscopy—An International Journal 16:361–371

    Google Scholar 

  17. Fenn JB (1993) J Am Soc Mass Spectrom 4:524–535

    CAS  Google Scholar 

  18. Konishi Y, Feng R (1994) Biochemistry 33:9706–9711

    CAS  PubMed  Google Scholar 

  19. Kebarle P, Ho Y (1997) in Electrospray Ionization Mass Spectrometry (Cole RB, Ed) John Wiley & Sons, New York p 3–63

  20. Dobo A, Kaltashov IA (2001) Anal Chem 73:4763–4773

    Article  CAS  PubMed  Google Scholar 

  21. Babu KR, Douglas DJ (2000) Biochemistry 39:14702–14710

    Article  CAS  PubMed  Google Scholar 

  22. Konermann L, Silva EA, Sogbein OF (2001) Anal Chem 73:4836–4844

    Article  CAS  PubMed  Google Scholar 

  23. Gatlin CL, Tureček (1994) Anal Chem 66:712–718

    CAS  Google Scholar 

  24. de la Mora JF, Van Berkel GJ, Enke CG, Cole RB, Martinez-Sanchez M, Fenn JB (2000) J Mass Spectrom 35:939–952

    PubMed  Google Scholar 

  25. Van Berkel GJ, Zhou F (1995) Anal Chem 67:2916–2923

    Google Scholar 

  26. Grandori R, Matečko I, Mayr P, Müller N (2001) J Mass Spectrom 36:918–922

    Article  CAS  PubMed  Google Scholar 

  27. Peschke M, Blades A, Kebarle P (2002) J Am Chem Soc 124:11519–11530

    Article  CAS  PubMed  Google Scholar 

  28. Iavarone AT, Williams ER (2003) J Am Chem Soc 125:2319–2327

    Article  CAS  PubMed  Google Scholar 

  29. de la Mora JF (2000) Anal Chim Acta 406:93–104

    Article  Google Scholar 

  30. Dole M, Mack LL, Hines RL, Mobley RC, Ferguson LD, Alice MB (1968) J Chem Phys 49:2240–2249

    CAS  Google Scholar 

  31. Iribarne JV, Thomson BA (1976) J Chem Phys 64:2287–2294

    Article  CAS  Google Scholar 

  32. Goto Y, Hagihara Y, Hamada D, Hoshino M, Nishii I (1993) Biochemistry 32:11878–11885

    CAS  PubMed  Google Scholar 

  33. Pan XM, Sheng XR, Zhou JM (1997) FEBS Letters 402:25–27

    Article  CAS  PubMed  Google Scholar 

  34. Konermann L, Douglas DJ (1998) J Am Soc Mass Spectrom 9:1248–1254

    Article  CAS  PubMed  Google Scholar 

  35. Loladze VV, Makhatadze GI (2002) Protein Sci 11:174–177

    Article  CAS  PubMed  Google Scholar 

  36. Sasahara K, Demura M, Nitta K (2002) Proteins 49:472–482

    Article  CAS  PubMed  Google Scholar 

  37. Kamatari YO, Konno T, Kataoka M, Akasaka K (1998) Protein Sci 7:681–688

    CAS  PubMed  Google Scholar 

  38. Mao D, Babu KR, Chen Y-L, Douglas DJ (2003) Anal Chem 75:1325–1330

    Article  CAS  PubMed  Google Scholar 

  39. Goto Y, Fink AL (1990) J Mol Biol 214:803–805

    CAS  PubMed  Google Scholar 

  40. Mirza UA, Chait BT (1994) Anal Chem 66:2898–2904

    CAS  PubMed  Google Scholar 

  41. Takáts Z, Drahos L, Schlosser G, Vékey K (2002) Anal Chem 74:6427–6429

    Article  PubMed  Google Scholar 

  42. Le Blanc JCY, Beuchemin D, Siu KWM, Guevremont R, Berman SS (1991) Org Mass Spectrom 26:831–839

    Google Scholar 

  43. Babu KR, Moradian A, Douglas DJ (2001) J Am Soc Mass Spectrom 12:317–328

    Article  CAS  PubMed  Google Scholar 

  44. Konermann L, Douglas DJ (1998) Rapid Commun Mass Spectrom 12:435–442

    CAS  PubMed  Google Scholar 

  45. Grandori R (2003) J Mass Spectrom 38:11–15

    Article  CAS  PubMed  Google Scholar 

  46. Gandini D, Gogioso L, Bolognesi M, Bordo D (1996) Proteins 24:439–449

    Article  CAS  PubMed  Google Scholar 

  47. Laurents DV, Huyghues-Despointes BMP, Bruix M, Thurlkill RL, Schell D, Newsom S, Grimsley GR, Shaw KL, Treviño S, Rico M, Briggs JM, Antosiewicz JM, Scholtz JM, Pace CN (2003) J Mol Biol 325:1077–1092

    Article  CAS  PubMed  Google Scholar 

  48. Shaw KL, Grimsley GR, Yakovlev GI, Makarov AA, Pace N (2001) Protein Sci 10:1206–1215

    Article  CAS  PubMed  Google Scholar 

  49. Huyghues-Despointes BMP, Thurlkill RL, Daily MD, Schell D, Briggs JM, Antosiewicz JM, Pace CN, Scholtz JM (2003) J Mol Biol 325:1093–1105

    Article  CAS  PubMed  Google Scholar 

  50. Yang AS, Honig B (1994) J Mol Biol 237:602–614

    CAS  PubMed  Google Scholar 

  51. Yang A-S, Honig B (1993) J Mol Biol 231:459–474

    Article  CAS  PubMed  Google Scholar 

  52. Anthonsen HW, Baptista A, Drabløs F, Martel P, Petersen SB (1994) J Biotechnol 36:185–220

    Google Scholar 

  53. Sundd M, Iverson N, Ibarra-Molero B, Sanches-Ruiz JM, Robertson AD (2002) Biochemistry 41:7586–7596

    Article  CAS  PubMed  Google Scholar 

  54. Šamalikova M, Grandori R (2003) J Mass Spectrom in press

  55. Creighton TE (1993) Proteins, structure and molecular properties 2nd ed W H Freeman and Company, New York

  56. Shortle D, Ackerman MS (2001) Science 293:487–489

    CAS  PubMed  Google Scholar 

  57. Plaxco KW, Gross M (2001) Nature Struct Biol 8:659–660

    Article  CAS  Google Scholar 

  58. Vazquez G, Alvarez E, Navaza JM (1995) J Chem Eng Data 40:611–614

    CAS  Google Scholar 

  59. Šamalikova M, Grandori R (2003) J Am Chem Soc, 125:13352–13353

    Google Scholar 

Download references

Acknowledgments

This work was supported by the grants P13906, T135 and P13511 of the Austrian Science Foundation (FWF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rita Grandori.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Šamalikova, M., Matečko, I., Müller, N. et al. Interpreting conformational effects in protein nano-ESI-MS spectra. Anal Bioanal Chem 378, 1112–1123 (2004). https://doi.org/10.1007/s00216-003-2339-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-003-2339-6

Keywords

Navigation