Skip to main content
Log in

A study of low level selenium determination by hydride generation atomic fluorescence spectrometry in water soluble protein and peptide fractions

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Development of a method for very low level selenium determination in water soluble protein and peptide fractions, obtained after various separation procedures, is presented. A hydride generation atomic fluorescence spectrometry (HG-AFS) detection system was optimised and the influence of Cu(II), Sb(V), As(III) and HNO3 interferences in the measurement of Se by HG-AFS was investigated. A destruction procedure using HNO3 and H2O2 was also optimised and the average recovery of the digestion of a solution of selenomethioneine was 92 ± 4% (n=14). Combination of this digestion with the detection system gave reliable results. Accuracy was tested by comparison with two independent methods. A very low detection limit (DL) of 0.2 ng/g of measuring solution was achieved. The whole procedure from weighing to measuring was performed in the same Teflon tube. The addition of HNO3 to the fractions before long term storage at -20°C was necessary to prevent adsorption on the test tubes.

Selenium was measured in water soluble protein and peptide fractions obtained after extraction, and Sephadex G-75 chromatography performed on liver samples from: i) hens exposed to As2O3, ii) hens fed with a high fat feed and iii) the certified reference material dogfish liver (CRM DOLT-2). Because of the very low DL we were able to observe the Se distribution in chromatographic fractions of samples of organisms which were not exposed to excess amounts of Se. The presence of selenium associated with metallothioneins was observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  1. Reilly C (1996) Selenium in food and health. Blackie Academic and Professional, London

  2. Olivas RM, Donard OFX (1994) Anal Chim Acta 286:357

    CAS  Google Scholar 

  3. Önning G, Bergdahl IA (1999) Analyst 124:1435

    Article  CAS  PubMed  Google Scholar 

  4. Chassaigne H, Chery CC, Bordin G, Rodriguez AR (2002) J Chromatogr A 976:409

    Article  CAS  PubMed  Google Scholar 

  5. Stockwell PB, Corns WT (1994) Analyst 119:1641

    CAS  Google Scholar 

  6. Dedina J (1995) Hydride generation atomic absorption spectrometry. Wiley, London

  7. Klaassen CD (1980) Heavy metals and heavy-metal antagonists. In: Gilman AG, Goodman LS, Gilman A (eds) The Pharmacological basis of therapeutics. Macmillian, Basingstoke, UK

  8. Holcman A, Stibilj V(1997) Arch Environ Contam Toxicol 32:407

    Article  CAS  PubMed  Google Scholar 

  9. Falnoga I, Stibilj V, Tušek-Žnidarič M, Šlejkovec Z, Mazej D, Jaćimović R, Ščančar J (2000) Biol Trace Elem Res 78:241

    CAS  PubMed  Google Scholar 

  10. Bremner I, Beattie JB (1990) Annu Rev Nutr 10:63

    Article  CAS  PubMed  Google Scholar 

  11. Kreppel H, Bauman JW, Liu J, McKim JM, Klaasen CD (1993) Fundam Appl Toxicol 20:184

    Article  CAS  PubMed  Google Scholar 

  12. Vadnjal R, Stibilj V, Holcman A, Dermelj M (1997) Zb Bioteniške Fak 70:195

    Google Scholar 

  13. NRC (National Research Council) (1994) Nutrient requirements of poultry. National Academy Press, Washington

  14. De Corte F, Van Sluijs R, Simonits A, Kučera J, Smodiš B, Byrne AR, De Wispelaere A, Bossus D, Frana J, Horak Z, Jaćimiović R (2001) Fresenius J Anal Chem 370:38

    Article  PubMed  Google Scholar 

  15. Van Elteren JT, Šlejkovec Z, Das HA (1999) Spectrochim Acta Part B 54:311

    Article  Google Scholar 

  16. PSA Application Note 054, PS Analytical LTD Kent

  17. Tam GKH, Lacroix G (1982) J Assoc Off Anal Chem 65:647

    CAS  PubMed  Google Scholar 

  18. Ding WW, Sturgeon RE (1997) Anal Chem 69:527

    Article  CAS  Google Scholar 

  19. Kos V, Veber M, Hudnik V (1998) Fresenius J Anal Chem 360:225

    Article  CAS  Google Scholar 

  20. Krynitsky AJ (1987) Anal Chem 59:1884

    CAS  PubMed  Google Scholar 

  21. Gomez Ariza JL, Morales E, Sanchez-Rodas D, Giraldez I (2000) Trends Anal Chem 19:200

    Article  Google Scholar 

  22. Stibilj V (1994) PhD thesis. University of Ljubljana

  23. Dermelj M, Hancman G, Gosar A, Byrne AR, Kosta L (1985) Vestn Slov kem druš 32:127

    Google Scholar 

  24. Stibilj V, Dermelj M, Byrne AR (1996) Microchim Acta 123:311

    CAS  Google Scholar 

  25. Sabé R, Rubio R, Garcia-Beltran L (2001) Anal Chim Acta 436:215

    Article  Google Scholar 

  26. Mazej D, Falnoga I, Stibilj V (2003) Acta Chim Slov 50:185

    CAS  Google Scholar 

  27. Prohaska C, Steffan I, Pomazal K, Torvenyi A (2000) J Anal At Spectrom 15:97

    Article  CAS  Google Scholar 

  28. Tiran B, Tiran A, Rossipal E, Lorenz O (1993) J Trace Elem Electrolytes Health Dis 7:211

    CAS  PubMed  Google Scholar 

  29. Harrison I, Littlejohn D, Fell GS (1996) Analyst 121:189

    CAS  PubMed  Google Scholar 

  30. Mounicou S, McSheehy S, Szpunar J, Potin-Gautier M, Lobinski R (2002) J Anal At Spectrom 17:15

    CAS  Google Scholar 

  31. Gammelgaard B, Jessen KD, Kristensen FH, Jøns O (2000) Anal Chim Acta 404:47

    CAS  Google Scholar 

  32. Farrant TJ (1997) Practical statistics for the analytical scientist. RSC, Cambridge, UK

  33. Mazej D, Stibilj V, Falnoga I (2003) Book of abstracts. XXXIII Colloquium Spectroscopicum Internationale, Granada 7–12.9.03, in press

  34. Falnoga I, Kobal AB, Stibilj V, Horvat M (2002) Biol Trace Elem Res 89:25

    CAS  PubMed  Google Scholar 

  35. Quevauviller P, De la Calle-Guntinas MB, Maier EA, Camara C (1995) Microchim Acta 118:131

    CAS  Google Scholar 

  36. Logar M, Horvat M, Falnoga I, Stibilj (2000) Fresenius J Anal Chem 366:453

    Article  CAS  PubMed  Google Scholar 

  37. Brigelious Flohé R (1999) Free Radic Biol Med 27:951

    Article  PubMed  Google Scholar 

  38. Falnoga I, Stibilj V, Tušek-Žnidarič M, Mazej D, Ščančar J (1999) Working Report No. 8179. Jožef Stefan Institute

  39. Mazej D. (2002) Masters thesis. University of Ljubljana

  40. Takatera K, Osaki N, Yamaguchi H, Watanabe T (1994) Anal Sci 10:567

    CAS  Google Scholar 

  41. Ferrarello CN, Fernandez de la Campa MR, Carrasco JF, Sanz-Medel A (2001) Spectrochem Acta, Part B 57:439

    Google Scholar 

  42. Viljoen AJ, Tappel AL (1988) J Inorg Biochem 34:277

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Drs. Zdenka Šlejkovec and Johannes van Elteren for their kind introduction to the HG-AFS technique. The Ministry of Education, Science and Sport of the Republic of Slovenia is thanked for financial support through the programmes P0–0531 "Biological and Geochemical Cycles" and P0–0532 "Radiochemistry and Radioecology".

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Stibilj.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stibilj, V., Mazej, D. & Falnoga, I. A study of low level selenium determination by hydride generation atomic fluorescence spectrometry in water soluble protein and peptide fractions. Anal Bioanal Chem 377, 1175–1183 (2003). https://doi.org/10.1007/s00216-003-2182-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-003-2182-9

Keywords

Navigation