Skip to main content
Log in

Three isoelectronic families of X\(_4\)Y\(_4\) cubic systems

  • Research
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

We performed several types of ab initio calculations, from Hartree-Fock to Complete-Active-Space second-order perturbation theory and Coupled Cluster, on compact clusters of stoichiometry X\(_4\)Y\(_4\), where X and Y are atoms belonging to the second row of the periodic table. More precisely, we considered the “cubic” structures of three isoelectronic groups, having a total of 48, 52, and 56-electrons, respectively. Notice that the highly symmetric cubic clusters of type X\(_8\) are characterized by an \(O_h\) symmetry group, while the X\(_4\)Y\(_4\) structures, with X\(\ne\)Y, have at most a \(T_d\) symmetry. Binding energies and wave function analysis of these clusters have been performed, in order to investigate the nature, and the electron delocalization of these systems and establish a comparison between them. To this purpose, we also computed the Total-Position Spread tensor for each structure, a quantity which is related to the multi-reference nature of a system wave function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Shinde R, Tayade M (2014) Remarkable hydrogen storage on beryllium oxide clusters: first-principles calculations. J Phys Chem C 118:17200–17204

    Article  CAS  Google Scholar 

  2. Roberto-Neto O, de Carvalho EFV (2020) A DFT and wave function theory study of hydrogen adsorption on small beryllium oxide clusters. Theor Chem Acc 139:93

    Article  CAS  Google Scholar 

  3. Manaa M (2001) A comparative study of cubic B4N4 and C8. J Mol Struct THEOCHEM 549:23–26

    Article  CAS  Google Scholar 

  4. Tsao JY, Chowdhury S, Hollis MA, Jena D, Johnson NM, Jones KA, Kaplar RJ, Rajan S, Van De Walle CG, Bellotti E, Chua CL, Collazo R, Coltrin ME, Cooper JA, Evans KR, Graham S, Grotjohn TA, Heller ER, Higashiwaki M, Islam MS, Juodawlkis PW, Khan MA, Koehler AD, Leach JH, Mishra UK, Nemanich RJ, Pilawa-Podgurski RCN, Shealy JB, Sitar Z, Tadjer MJ, Witulski AF, Wraback M, Simmons JA (2018) Ultrawide-bandgap semiconductors: research opportunities and challenges. Adv Electr Mater 4:1600501

    Article  Google Scholar 

  5. Evangelisti S (1996) Ab initio study of C4O4 in Td symmetry. Chem Phys Lett 259:261–264

    Article  ADS  CAS  Google Scholar 

  6. Evangelisti S (1997) Carbon-oxygen clusters as hypothetical high energy-density materials. Chem Phys 218:21–30

    Article  CAS  Google Scholar 

  7. Schmidt MW, Gordon MS, Boatz JA (2000) Cubic fuels? Int J Quant Chem 76(3):434–446

    Article  CAS  Google Scholar 

  8. Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) C60: buckminsterfullerene. Nature 318:162

    Article  ADS  CAS  Google Scholar 

  9. Jensen F (1993) The stability of cage and ring isomers for carbon and boron nitride clusters. Chem Phys Lett 209:417–422

    Article  ADS  CAS  Google Scholar 

  10. Hirsch A, Chen Z, Jiao H (2000) Spherical aromaticity in Ih symmetrical fullerenes: the 2(N+1)2 rule. Angewandte Chem 39:3915–3917

    Article  ADS  CAS  Google Scholar 

  11. Bühl M, Hirsch A (2001) Spherical aromaticity of fullerenes. Chem Rev 101:1153–1184

    Article  PubMed  Google Scholar 

  12. Hirsch A (2010) The era of carbon allotropes. Nat Mater 9:868–871

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Poater J, Sola M (2011) Open-shell spherical aromaticity: the 2n2 + 2n + 1 (with s = n + 1/2) rule. Chem Commun 47:11647–11649

    Article  CAS  Google Scholar 

  14. Sharapa D, Hirsch A, Meyer B, Clark T (2015) Cubic C \(_{\rm 8 }\) : an observable allotrope of carbon? Chem Phys Chem 16:2165–2171

    Article  CAS  PubMed  Google Scholar 

  15. Guest MF, Hillier IH (1974) Electronic structure of boron hydrides. Ab initio study of B\(_{10}\)H\(_{14}\), B\(_{10}\)H\(^{-2}_{14}\), and B\(_{10}\)H\(^{-2}_{12}\). J Chem Soc 70:2004

  16. Lin C-SL, Liu C-WJ (2010) Theoretical study on tetranuclear boron clusters: B\(_{4}\)X\(_{4}\) (X = H, F, Cl, Br, I). Chin J Chem 12:305–313

    Article  Google Scholar 

  17. Swanton DJ, Ahlrichs R (1989) Electronic structures of the boron cage molecules B4H4, B4Cl4 and B4F4. Theor Chim Acta 75(3):163–172

    Article  CAS  Google Scholar 

  18. Li T, He C, Zhang W (2019) A novel porous C\(_{4}\)N\(_{4}\) monolayer as a potential anchoring material for lithium-sulfur battery design. J Mater Chem A 7(8):4134–4144

    Article  CAS  Google Scholar 

  19. Fowler PW, Rogers KM, Heine T, Seifert G (1999) Homonuclear bonds in BN clusters?. In: The 13th international winterschool on electronic properties of novel materials- science and technology of molecular nanostructures, Kirchberg, Tirol (Austria), pp 170–174, ASCE

  20. Martin JM, El-Yazal J, François J-P, Gijbels R (1995) Structures and thermochemistry of B\(_{3}\)N\(_{3}\) and B\(_{4}\)N\(_{4}\). Chem Phys Lett 232:289–294

    Article  ADS  CAS  Google Scholar 

  21. Novikov NV, Dolinskiy IY, Gimaldinova MA, Katin KP, Maslov MM (2017) Benchmark study of the exchange-corrected density functionals: application to strained boron nitride clusters. Turk Comput Theor Chem 1(2):27–34

    Google Scholar 

  22. Chaglayan B, Huran AW, Ben Amor N, Brumas V, Evangelisti S, Leininger T (2019) Spherical aromaticity and electron delocalization in C\({_8}\) and C\({_4}\)N\({_4}\) cubic systems. Theor Chem Acc 138:1

    Article  CAS  Google Scholar 

  23. Ren L, Cheng L, Feng Y, Wang X (2012) Geometric and electronic structures of (BeO)\(_{\rm {N} }\) ( N = 2–12, 16, 20, and 24): Rings, double rings, and cages. J Chem Phys 137:014309

    Article  ADS  PubMed  Google Scholar 

  24. Guo J-C, Hou G-L, Li S-D, Wang X-B (2012) Probing the low-lying electronic states of cyclobutane tetraone (C\(_{{\rm 4}}\)O\(_{{\rm 4}}\)) and its radical anion: a low-temperature anion photoelectron spectroscopic approach. J Phys Chem Lett 3:304–308

    Article  CAS  PubMed  Google Scholar 

  25. Zhou X, Hrovat DA, Borden WT (2010) Calculations of the relative energies of the \(^{{\rm 2}}\)B\(_{{\rm 1g}}\) and \(^{{\rm 2}}\)A\(_{{\rm 2u}}\) states of cyclobutane tetraone radical cation and radical anion provide further evidence of a \(^{{\rm 3}}\)B\(_{{\rm 2u}}\) ground state for the neutral molecule: a proposed experimental test of the prediction of a triplet ground state for (CO)\(_{{\rm 4}}\). J Phys Chem A 114:1304–1308

    Article  CAS  PubMed  Google Scholar 

  26. Evangelisti S, Gagliardi L (1996) A complete active-space self-consistent-field study on cubic N8. Il Nuovo Cimento D 18:1395–1405

    Article  ADS  Google Scholar 

  27. Ochsenfeld C, Ahlrichs R (1994) An ab initio investigation of structure and energetics of clusters KnCln and LinFn. Berichte der Bunsengesellschaft für physikalische Chemie 98:34–47

    Article  CAS  Google Scholar 

  28. Lintuluoto M (2001) Theoretical study on the structure and energetics of alkali halide clusters. J Mol Struct THEOCHEM 540(1):177–192

    Article  CAS  Google Scholar 

  29. Bickelhaupt FM, Solà M, Guerra CF (2007) Covalent versus ionic bonding in alkalimetal fluoride oligomers. J Comput Chem 28(1):238–250

    Article  CAS  PubMed  Google Scholar 

  30. Resta R, Sorella S (1999) Electron localization in the insulating state. Phys Rev Lett 82:370–373

    Article  ADS  CAS  Google Scholar 

  31. Resta R (1998) Quantum-mechanical position operator in extended systems. Phys Rev Lett 80:1800–1803

    Article  ADS  CAS  Google Scholar 

  32. Resta R (2002) Why are insulators insulating and metals conducting? J Phys Condens Matter 14:R625–R656

    Article  ADS  CAS  Google Scholar 

  33. Vetere V, Monari A, Bendazzoli GL, Evangelisti S, Paulus B (2008) Full configuration interaction study of the metal-insulator transition in model systems: LiN linear chains (N=2,4,6,8). J Chem Phys 128:024701

    Article  ADS  PubMed  Google Scholar 

  34. Monari A, Bendazzoli GL, Evangelisti S (2008) The metal-insulator transition in dimerized Hückel chains. J Chem Phys 129:134104

    Article  ADS  PubMed  Google Scholar 

  35. Bendazzoli GL, Evangelisti S, Monari A, Resta R (2010) Kohn’s localization in the insulating state: one-dimensional lattices, crystalline versus disordered. J Chem Phys 133:064703

    Article  ADS  PubMed  Google Scholar 

  36. Bendazzoli GL, Evangelisti S, Monari A (2011) Full-configuration-interaction study of the metal-insulator transition in a model system: H\(_{\rm n }\) linear chains n =4, 6,..., 16. Int J Quant Chem 111:3416–3423

    Article  CAS  Google Scholar 

  37. Bendazzoli GL, Evangelisti S, Monari A (2012) Asymptotic analysis of the localization spread and polarizability of 1-D noninteracting electrons. Int J Quant Chem 112:653–664

    Article  CAS  Google Scholar 

  38. Giner E, Bendazzoli GL, Evangelisti S, Monari A (2013) Full-configuration-interaction study of the metal-insulator transition in model systems: Peierls dimerization in Hn rings and chains. J Chem Phys 138:074315

    Article  ADS  PubMed  Google Scholar 

  39. Diaz-Marquez A, Battaglia S, Bendazzoli GL, Evangelisti S, Leininger T, Berger JA (2018) Signatures of Wigner localization in one-dimensional systems. J Chem Phys 148:124103

    Article  ADS  PubMed  Google Scholar 

  40. de Aragão EVF, Moreno D, Battaglia S, Bendazzoli GL, Evangelisti S, Leininger T, Suaud N, Berger JA (2019) A simple position operator for periodic systems. Phys Rev B 99:205144

    Article  ADS  Google Scholar 

  41. Angeli C, Bendazzoli GL, Evangelisti S, Berger JA (2021) The localization spread and polarizability of rings and periodic chains. J Chem Phys 155:124107

    Article  ADS  CAS  PubMed  Google Scholar 

  42. François G, Angeli C, Bendazzoli GL, Brumas V, Evangelisti S, Berger JA (2023) Mapping of Hückel zigzag carbon nanotubes onto independent polyene chains: application to periodic nanotubes. J Chem Phys 159:094106

    Article  ADS  PubMed  Google Scholar 

  43. Angeli C, Bendazzoli GL, Evangelisti S (2013) The localization tensor for the H2 molecule: closed formulae for the Heitler-London and related wavefunctions and comparison with full configuration interaction. J Chem Phys 138:054314

    Article  ADS  PubMed  Google Scholar 

  44. Brea O, El Khatib M, Angeli C, Bendazzoli GL, Evangelisti S, Leininger T (2013) Behavior of the position-spread tensor in diatomic systems. J Chem Theory Comput 9:5286–5295

    Article  CAS  PubMed  Google Scholar 

  45. Bendazzoli GL, El Khatib M, Evangelisti S, Leininger T (2014) The total position spread in mixed-valence compounds: a study on the model system. J Comput Chem 35:802–808

    Article  CAS  PubMed  Google Scholar 

  46. Brea O, El Khatib M, Bendazzoli GL, Evangelisti S, Leininger T, Angeli C (2016) The spin-partitioned total-position spread tensor: an application to diatomic molecules. J Phys Chem A 120:5230–5238

    Article  CAS  PubMed  Google Scholar 

  47. El Khatib M, Brea O, Fertitta E, Bendazzoli GL, Evangelisti S, Leininger T, Paulus B (2015) Spin delocalization in hydrogen chains described with the spin-partitioned total position-spread tensor. Theor Chem Acc 134:29

    Article  Google Scholar 

  48. El Khatib M, Brea O, Fertitta E, Bendazzoli GL, Evangelisti S, Leininger T (2015) The total position-spread tensor: spin partition. J Chem Phys 142:094113

    Article  ADS  PubMed  Google Scholar 

  49. Fertitta E, El Khatib M, Bendazzoli GL, Paulus B, Evangelisti S, Leininger T (2015) The spin-partitioned total position-spread tensor: an application to Heisenberg spin chains. J Chem Phys 143:244308

    Article  ADS  PubMed  Google Scholar 

  50. Widmark P-O, Malmqvist PÅ, Roos BO (1990) Density matrix averaged atomic natural orbital (ANO) basis sets for correlated molecular wave functions: I. first row atoms. Theor Chim Acta 77(5):291–306

    Article  CAS  Google Scholar 

  51. Eckert F, Pulay P, Werner H-J (1997) Ab initio geometry optimization for large molecules. J Comput Chem 18(12):1473–1483

    Article  CAS  Google Scholar 

  52. Werner H-J, Knowles PJ, Celani P, Györffy W, Hesselmann A, Kats D, Knizia G, Köhn A, Korona T, Kreplin D, Lindh R, Ma Q, Manby FR, Mitrushenkov A, Rauhut G, Schütz M, Shamasundar KR, Adler TB, Amos RD, Bennie SJ, Bernhardsson A, Berning A, Black JA, Bygrave PJ, Cimiraglia R, Cooper DL, Coughtrie D, Deegan MJO, Dobbyn AJ, Doll K, Dornbach M, Eckert F, Erfort S, Goll E, Hampel C, Hetzer G, Hill JG, Hodges M, Hrenar T, Jansen G, Köppl C, Kollmar C, Lee SJR, Liu Y, Lloyd AW, Mata RA, May AJ, Mussard B, McNicholas SJ, Meyer W, Miller III TF, Mura ME, Nicklass A, O’Neill DP, Palmieri P, Peng D, Peterson KA, Pflüger K, Pitzer R, Polyak I, Reiher M, Richardson JO, Robinson JB, Schröder B, Schwilk M, Shiozaki T, Sibaev M, Stoll H, Stone AJ, Tarroni R, Thorsteinsson T, Toulouse J, Wang M, Welborn M, Ziegler B, Molpro, Version 2020, a package of ab initio programs. https://www.molpro.net

  53. Aquilante F, De Vico L, Ferré N, Ghigo G, Malmqvist PÅ, Neogrády P, Pedersen TB, Pitoňák M, Reiher M, Roos BO, Serrano-Andrés L, Urban M, Veryazov V, Lindh R (2010) Molcas 7: the next generation. J Comput Chem 31(1):224–247

    Article  CAS  PubMed  Google Scholar 

  54. Veryazov V, Widmark P-O, Serrano-Andrés L, Lindh R, Roos BO (2004) 2molcas as a development platform for quantum chemistry software. Int J Quantum Chem 100(4):626–635

    Article  CAS  Google Scholar 

  55. Karlström G, Lindh R, Malmqvist PÅ, Roos BO, Ryde U, Veryazov V, Widmark P-O, Cossi M, Schimmelpfennig B, Neogrády P, Seijo L (2003) Molcas: a program package for computational chemistry. Comput Mat Sci 28:222–239

    Article  Google Scholar 

  56. Roos BO, Taylor PR, Siegbahn PE (1980) A complete active space SCF method (CASSCF) using a density matrix formulated super-CI approach. Chem Phys 48(2):157–173

    Article  MathSciNet  CAS  Google Scholar 

  57. Andersson K, Malmqvist PÅ, Roos BO, Sadlej AJ, Wolinski K (1990) Second-order perturbation theory with a CASSCF reference function. J Phys Chem 94:5483–5488

    Article  CAS  Google Scholar 

  58. Hampel C, Peterson KA, Werner H-J (1992) A comparison of the efficiency and accuracy of the quadratic configuration interaction (QCISD), coupled cluster (CCSD), and Brueckner coupled cluster (BCCD) methods. Chem Phys Lett 190:1–12

    Article  ADS  CAS  Google Scholar 

  59. Watts JD, Gauss J, Bartlett RJ (1993) Coupled-cluster methods with noniterative triple excitations for restricted open-shell Hartree-Fock and other general single determinant reference functions. Energies and analytical gradients. J Chem Phys 98:8718–8733

    Article  ADS  CAS  Google Scholar 

  60. El Khatib M, Leininger T, Bendazzoli GL, Evangelisti S (2014) Computing the position-spread tensor in the cas-scf formalism. Chem Phys Lett 591:58–63

    Article  ADS  Google Scholar 

  61. Huran AW, Leininger T, Bendazzoli GL, Evangelisti S (2016) Computing the position-spread tensor in the cas-scf formalism II: Spin partition. Chem Phys Lett 664:120–126

    Article  ADS  CAS  Google Scholar 

  62. Gagliardi L, Lindh R, Karlström G (2004) Local properties of quantum chemical systems: The LoProp approach. J Chem Phys 121:4494–4500

    Article  ADS  CAS  PubMed  Google Scholar 

  63. Zhao L, Pan S, Frenking G (2022) The nature of the polar covalent bond. J Chem Phys 157:034105

Download references

Acknowledgements

It is a real pleasure for us to dedicate this work to our friend and colleague, Prof. Maurizio Persico, in honor of his 70th birthday. This work was partly supported by the French “Center National de la Recherche Scientifique” (CNRS, also under the PICS action 4263). It has received fundings from the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie Grant agreement no642294. This work was also supported by the “Program Investissements d’Avenir” under the program ANR-11-IDEX-0002-02, reference ANR-10-LABX-0037-NEXT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadia Ben Amor.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 1557 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brumas, V., Evangelisti, S. & Ben Amor, N. Three isoelectronic families of X\(_4\)Y\(_4\) cubic systems. Theor Chem Acc 143, 19 (2024). https://doi.org/10.1007/s00214-024-03091-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-024-03091-3

Navigation