Skip to main content
Log in

Analytical multiconfiguration treatment to one-center many-electron He-isoelectronic ions and Period-II elements with H-like bound-states

  • Research
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Employing H-like spin-orbitals (SOs) in electronic structure theory is a long-awaited quantum problem as the analytical integral of Coulomb interaction is very difficult to solve for one-center many-electron (1c-ne) system. He-isoelectronic ions become a benchmark. Complexity grows fast for Period-II s- and p-block elements with increasing number of electrons. Moreover, Hartree-Fock Self-Consistent Field (SCF) and post Hartree-Fock SCF theories generally make use of closed-shell, restricted and unrestricted open-shell single configurations (SCs) but actual electronic bound states urge for multiconfigurations (MCs). After Born-Oppenheimer (BO) approximation, utilization of associated Laguerre polynomial/Whittaker-M function basis sets of H-like SOs for the Coulomb Green\('\)s function among electrons furnishes analytical, terminable, simple and finitely summed integrals in terms of Lauricella functions. MCs complying with so-called ground, singly and multiply excited states incurring s- and p-SOs are constructed to capture monopole and dipole factors only. However, we believe that quadrupole and higher order poles can be achieved as a product of angular integrals using Wigner 3-j symbols and closed forms of radial integrals. We have observed good agreement among literature and exact ground state energies (GSEs) of He-isoelectronic ions and Period-II elements with both their so-called ground electronic configurations as well as MCs. For certain elements, we have found satisfactory results for ionization energies (IEs).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kellner GW (1927) Zeitschrift für Physik 44:91. https://doi.org/10.1007/BF01391720

    Article  CAS  Google Scholar 

  2. Hylleraas EA (1929) E.A. Zeitschrift für Physik 54:347. https://doi.org/10.1007/BF01375457

    Article  CAS  Google Scholar 

  3. Hylleraas EA (1930) Zeitschrift für Physik 65:209. https://doi.org/10.1007/BF01397032

    Article  CAS  Google Scholar 

  4. Kinoshita T (1957) Phys Rev 105:1490. https://doi.org/10.1103/PhysRev.105.1490

    Article  CAS  Google Scholar 

  5. Pekeris CL (1959) Phys Rev 115:1216. https://doi.org/10.1103/PhysRev.115.1216

    Article  CAS  Google Scholar 

  6. Frankowski K, Pekeris CL (1966) Phys Rev 146:46. https://doi.org/10.1103/PhysRev.146.46

    Article  CAS  Google Scholar 

  7. Bhattacharyya S, Bhattacharyya A, Talukdar B, Deb NC (1996) J Phys B: Atomic, Molecular Optical Phys 29:L147. https://doi.org/10.1088/0953-4075/29/5/003

    Article  CAS  Google Scholar 

  8. Korobov VI (2002) Phys Rev A 66:024501. https://doi.org/10.1103/PhysRevA.66.024501

    Article  CAS  Google Scholar 

  9. Roothaan CCJ (1960) Rev Mod Phys 32:179. https://doi.org/10.1103/RevModPhys.32.179

    Article  Google Scholar 

  10. Sahni V, Krieger JB (1971) Int J Quantum Chem 5:47. https://doi.org/10.1002/qua.560050807

    Article  Google Scholar 

  11. Combescot R (2017) Phys Rev X 7:041035. https://doi.org/10.1103/PhysRevX.7.041035

    Article  Google Scholar 

  12. Fock V (1954) Izv Akad Nauk SSSR Ser Fiz 18:161

  13. Scherr CW (1960) J Chem Phys 33:317. https://doi.org/10.1063/1.1731129

  14. Scherr CW, Knight RE (1963) Rev Mod Phys 35:436. https://doi.org/10.1103/RevModPhys.35.436

    Article  CAS  Google Scholar 

  15. Nakashima H, Nakatsuji H (2007) J Chem Phys 127:224104. https://doi.org/10.1063/1.2801981

    Article  CAS  PubMed  Google Scholar 

  16. Kato T (1957) Commun Pure Appl Math 10:151. https://doi.org/10.1002/cpa.3160100201

    Article  Google Scholar 

  17. Sharma S, Aggarwal P, Kaur H, Hazra RK (2019) J Indian Chem Soc 96:775

    Google Scholar 

  18. Sharma S, Aggarwal P, Hazra RK (2020) Mol Phys 118:e1770881. https://doi.org/10.1080/00268976.2020.1770881

    Article  CAS  Google Scholar 

  19. Sharma S, Kapil B, Aggarwal P, Hazra RK (2022) Physics Open 11:100107. https://doi.org/10.1016/j.physo.2022.100107

    Article  CAS  Google Scholar 

  20. Kapil B, Sharma S, Aggarwal P, Hazra RK (2022) Eur Phys J Plus 137:809. https://doi.org/10.1140/epjp/s13360-022-02970-7

    Article  CAS  Google Scholar 

  21. Poszwa A (2020) Physica E 124:114247. https://doi.org/10.1016/j.physe.2020.114247

    Article  CAS  Google Scholar 

  22. Clementi E, Veillard A (1966) J Chem Phys 44:3050. https://doi.org/10.1063/1.1727179

  23. Clementi E, Roothaan CCJ, Yoshimine M (1962) Phys Rev 127:1618. https://doi.org/10.1103/PhysRev.127.1618

  24. Clementi E (1963a) Correlation Energy for Atomic Systems. J Chem Phys 38:2248. https://doi.org/10.1063/1.1733957

  25. Clementi E (1963b) J Chem Phys 38:1001. https://doi.org/10.1063/1.1733745

  26. Schmidt KE, Moskowitz JW (1990) J Chem Phys 93:4172. https://doi.org/10.1063/1.458750

    Article  CAS  Google Scholar 

  27. Moskowitz JW, Schmidt KE (1992) J Chem Phys 97:3382. https://doi.org/10.1063/1.463938

    Article  CAS  Google Scholar 

  28. Alexander SA, Coldwell RL (1995) J Chem Phys 103:2572. https://doi.org/10.1063/1.469679

    Article  CAS  Google Scholar 

  29. Lin X, Zhang H, Rappe AM (2000) J Chem Phys 112:2650. https://doi.org/10.1063/1.480839

    Article  CAS  Google Scholar 

  30. Browne JC, Miller J (1962) J Chem Phys 36:2324. https://doi.org/10.1063/1.1732884

    Article  Google Scholar 

  31. Shull H (1959) J Chem Phys 30:1405. https://doi.org/10.1063/1.1730212

    Article  CAS  Google Scholar 

  32. Hagstrom S, Shull H (1959) J Chem Phys 30:1314. https://doi.org/10.1063/1.1730179

    Article  CAS  Google Scholar 

  33. Jones WD, Brooks FL (1960) J Chem Phys 32:124. https://doi.org/10.1063/1.1700884

    Article  CAS  Google Scholar 

  34. Levine IN (2014) Quantum chemistry, 7th edn. Pearson, Boston

    Google Scholar 

  35. Dutta J, Mukherjee S, Naskar K, Ghosh S, Mukherjee B, Ravi S, Adhikari S (2020) Phys Chem Chem Phys 22:27496. https://doi.org/10.1039/D0CP04052E

    Article  CAS  PubMed  Google Scholar 

  36. Baer M (2002) Phys Rep 358:75. https://doi.org/10.1016/S0370-1573(01)00052-7

    Article  CAS  Google Scholar 

  37. Mukherjee B, Naskar K, Mukherjee S, Ghosh S, Sahoo T, Adhikari S (2019) Int Rev Phys Chem 38:287. https://doi.org/10.1080/0144235X.2019.1672987

    Article  CAS  Google Scholar 

  38. Feynman RP (1939) Phys Rev 56:340. https://doi.org/10.1103/PhysRev.56.340

    Article  CAS  Google Scholar 

  39. Lichten W (1967) Phys Rev 164:131. https://doi.org/10.1103/PhysRev.164.131

    Article  CAS  Google Scholar 

  40. Smith FT (1969) Phys Rev 179:111. https://doi.org/10.1103/PhysRev.179.111

    Article  Google Scholar 

  41. Arfken G, Weber H (2005) Mathematical Methods for Physicists. Elsevier, Netherlands

    Google Scholar 

  42. Pilar FL (1968) Elementary quantum chemistry, Quantum Mechanics. McGraw-Hill, New York

    Google Scholar 

  43. Merzbacher E (1998) Quantum Mechanics. Wiley, New York

    Google Scholar 

  44. Cohen-Tannoudji C, Diu B, Laloë F (1977) Quantum Mechanics. Wiley, New York

    Google Scholar 

  45. Griffiths D (1999) Introduction to Electrodynamics. Prentice Hall, Hoboken

    Google Scholar 

  46. Jackson J (1999) Classical Electrodynamics. John Wiley & Sons, Hoboken

    Google Scholar 

  47. Messiah A (1999) Quantum Mechanics, Dover books on physics. Dover Publications, Mineola

    Google Scholar 

  48. Friedrich H (1991) Theoretical atomic physics. Springer-Verlag, Berlin, p 115

    Book  Google Scholar 

  49. Kramida A, Ralchenko Yu, Reader J (2021) and NIST ASD Team, howpublished NIST Atomic Spectra Database (ver. 5.9), [Online] National Institute of Standards and Technology, Gaithersburg, MD

  50. Sarsa A, Gálvez FJ, Buendía E (1998) J Chem Phys 109:3346. https://doi.org/10.1063/1.476929

    Article  CAS  Google Scholar 

  51. Eyring H, Walter J, Kimball G (1961) Quantum Chemistry. John Wiley & Sons, Incorporated, New York

    Google Scholar 

  52. Antonsen F (1999) Phys Rev A 60:812. https://doi.org/10.1103/physreva.60.812

    Article  CAS  Google Scholar 

  53. Drake GW (1988) Can J Phys 66:586. https://doi.org/10.1139/p88-100

    Article  CAS  Google Scholar 

  54. Yerokhin VA, Pachucki K (2010) Phys Rev A 81:022507. https://doi.org/10.1103/PhysRevA.81.022507

    Article  CAS  Google Scholar 

  55. Erdélyi A (1937) Monatshefte für Mathematik und Physik 46:1. https://doi.org/10.1007/BF01792661

    Article  Google Scholar 

Download references

Acknowledgements

We express our sincere thanks to Professor Shankar Prasad Bhattacharyya for his continuous motivation. Our sincere thanks go to CSIR (SRF scheme) and FRP Grant under Institution of Eminence, University of Delhi (Ref. No./IoE/2021/12/FRP) for their financial support.

Author information

Authors and Affiliations

Authors

Contributions

BK and RKH wrote the main manuscript text. All authors reviewed the manuscript.

Corresponding author

Correspondence to Ram Kuntal Hazra.

Ethics declarations

Conflicts of interest

Authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A Standard equations and integrals

Associated Laguerre Polynomial [17,18,19,20, 41]

$$\begin{aligned} L^{\mu }_{k}(x)=\sum _{m=0}^{k}(-1)^m\frac{(\mu +k)!}{(k-m)!(\mu +m)!m!}x^m \hspace{0.5cm}\text {where}\hspace{0.5cm}\mu >-1 \end{aligned}$$
(A.1)

Lower and Upper Incomplete Gamma function [17,18,19,20, 41]

$$\begin{aligned} &\gamma (a,x)=\int _{0}^{x}e^{-t}t^{a-1}dt=(a-1)!\bigg (1-e^{-x}\sum _{s=0}^{a-1}\frac{x^s}{s!}\bigg ) \nonumber \\ &\Gamma (a,x)=\int _{x}^{\infty }e^{-t}t^{a-1}dt=(a-1)!\bigg (e^{-x}\sum _{s=0}^{a-1}\frac{x^s}{s!}\bigg )\\&\text {where}\hspace{0.5cm} Re(a)\ge 0 \end{aligned}$$
(A.2)

Standard Integral-I (Erd\(\acute{e}\)lyi’s Integral) [17,18,19,20, 55]

$$\begin{aligned} \begin{aligned}&\int _0^{\infty } x^{\left( \varrho -1\right) } e^{-cx}M_{\kappa _1,\gamma _1-\frac{1}{2}}(a_1x)M_{\kappa _2, \gamma _2-\frac{1}{2}}(a_2x) dx\\&=a_1^{\gamma _1}a_2^{\gamma _2}(c+A)^{-\varrho -M}\Gamma (\varrho +M)\\&\quad \times F_2\left( \varrho +M;\gamma _1-\kappa _1,\gamma _2-\kappa _2;2\gamma _1,2\gamma _2;\frac{a_1}{c+A},\frac{a_2}{c+A}\right) \\&\text {where } Re(\varrho +M)>0, Re\left( c\pm \frac{1}{2}a_1\pm \frac{1}{2}a_2\right) >0 \text { and } M\\&=\gamma _1+\gamma _2 \end{aligned} \end{aligned}$$
(A.3)

Recurrence Relations [19, 41]

$$\begin{aligned} a) &\int Y_l^{m*}Y_0^0Y_l^md\Omega=\sqrt{\frac{1}{4\pi }}\nonumber \\ b) &\int Y_{l+1}^{m*}Y_1^0Y_l^md\Omega=\sqrt{\frac{3}{4\pi }}\sqrt{\frac{(l-m+1)(l+m+1)}{(2l+1)(2l+3)}}\nonumber \\ c) &\int Y_{l-1}^{m*}Y_1^0Y_l^md\Omega=\sqrt{\frac{3}{4\pi }}\sqrt{\frac{(l-m)(l+m)}{(2l+1)(2l-1)}}\nonumber \\ d) &\int Y_{l+1}^{m+1*}Y_1^1Y_l^md\Omega=\sqrt{\frac{3}{8\pi }}\sqrt{\frac{(l+m+1)(l+m+2)}{(2l+1)(2l+3)}}\nonumber \\ e) &\int Y_{l-1}^{m+1*}Y_1^1Y_l^md\Omega=-\sqrt{\frac{3}{8\pi }}\sqrt{\frac{(l-m)(l-m-1)}{(2l+1)(2l-1)}}\nonumber \\ f) &\int Y_{l+1}^{m-1*}Y_1^{-1}Y_l^md\Omega=\sqrt{\frac{3}{8\pi }}\sqrt{\frac{(l-m+1)(l-m+2)}{(2l+1)(2l+3)}}\nonumber \\ g) &\int Y_{l-1}^{m-1*}Y_1^{-1}Y_l^md\Omega=-\sqrt{\frac{3}{8\pi }}\sqrt{\frac{(l+m)(l+m-1)}{(2l+1)(2l-1)}} \end{aligned}$$
(A.4)

Appendix B Degeneracies of lowest bound states

Table 4 Lowest bound states obtained after diagonalization for He-isoelectronic ions
Table 5 Lowest bound states obtained after diagonalization for atoms B, C, O and F

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kapil, B., Sharma, S., Aggarwal, P. et al. Analytical multiconfiguration treatment to one-center many-electron He-isoelectronic ions and Period-II elements with H-like bound-states. Theor Chem Acc 142, 90 (2023). https://doi.org/10.1007/s00214-023-03011-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-023-03011-x

Keywords

Navigation