Skip to main content
Log in

Can a decrease in anti-aromaticity increase the dihydrogen activation ability of a frustrated phosphorous/borane Lewis pair?: a DFT study

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The mechanism of dihydrogen activation has been theoretically investigated by means of DFT calculation. An experimentally synthesized bridged P/B frustrated Lewis pair (FLP) and two designed FLPs are used for this purpose. The model FLPs 2 and 3 are more efficient than FLP 1 for H2 activation as revealed by the thermochemical and kinetic data. A significant amount of electron density is transferred from H2 molecule to the FLPs at the transition states (TSs) during the process of H2 activation, and this is greater at the corresponding TSs of FLPs 2 and 3 than that of FLP 1. The NICS(0) and NICS(1zz) of the boron heterocycle at the FLPs 2 and 3, and at the corresponding TSs and the product geometries of H2 activation demonstrate that the anti-aromatic character of the rings in the FLPs is remarkably reduced at the TSs and finally at the products and that is most likely responsible for enhanced activity of FLPs 2 and 3 by decreasing the activation barrier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1.
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Appelt C, Westenberg H, Bertini F, Ehlers AW, Slootweg JC, Lammertsma K, Uhl W (2011) Geminal Phosphorus/Aluminum-based frustrated Lewis pairs: C-H versus C-C activation and CO2 fixation. Angew Chem Int Ed 50:3925–3928

    CAS  Google Scholar 

  2. Ashley AE, Thompson AL, Hare DO (2009) Non-metal-mediated homogeneous hydrogenation of CO2 to CH3OH. Angew Chem Int Ed 48:9839–9843

    CAS  Google Scholar 

  3. Axenov KV, Kehr G, Frohlich R, Erker G (2009) Catalytic hydrogenation of sensitive organometallic compounds by antagonistic N/B Lewis pair catalyst systems. J Am Chem Soc 131:3454–3455

    CAS  PubMed  Google Scholar 

  4. Bertini F, Lyaskovskyy V, Timmer BJJ, de Kanter FJJ, Lutz M, Ehlers AW, Chris Slootweg J, Lammertsma K (2012) Preorganized frustrated Lewis pairs. J Am Chem Soc 134:201–204

    CAS  PubMed  Google Scholar 

  5. Cabrera-Trujillo JJ, Fernández I (2019) Aromaticity can enhance the reactivity of P-donor/borole frustrated Lewis pairs. Chem Commun 55:675–678

    CAS  Google Scholar 

  6. Cardenas AJP, Culotta BJ, Warren TH, Grimme S, Stute A, Froehlich R, Kehr G, Erker G (2011) Capture of NO by a frustrated Lewis pair: a new type of persistent N-Oxyl radical. Angew Chem Int Ed 50:7567–7571

    CAS  Google Scholar 

  7. Cedillo A, Chattaraj PK, Parr RG (2000) An atoms- in-molecules partitioning of the density. Int J Quantum Chem 77:403–407

    CAS  Google Scholar 

  8. Chase PA, Jurca T, Stephan DW (2008) Lewis acid-catalyzed hydrogenation: B(C6F5)3-mediated reduction of imines and nitriles with H2. ChemCommun 14:1701–1703

    Google Scholar 

  9. Chase PA, Welch GC, Jurca T, Stephan DW (2007) Metal-free catalytic hydrogenation. Angew Chem Int Ed 46:8050–8053

    CAS  Google Scholar 

  10. Chattaraj PK, Maiti B, Sarkar U (2003) Philicity: a unified treatment of chemical reactivity and selectivity. J Phys Chem A 107:4973

    CAS  Google Scholar 

  11. Cheeseman JR, Trucks GW, Keith TA, Frisch MJ (1996) A comparison of models for calculating nuclear magnetic resonance shielding tensors. J Chem Phys 104:5497–5509

    CAS  Google Scholar 

  12. Chernichenko K, Madarasz A, Papai I, Nieger M, Leskela M, Repo TA (2013) frustrated-Lewis-pair approach to catalytic reduction of alkynes to cis-alkenes. Nat Chem 5:718–723

    CAS  PubMed  Google Scholar 

  13. Courtemanche M-A, Legare M-A, Maron L, Fontaine F-G (2014) Reducing CO2 to methanol using frustrated Lewis pairs: on the mechanism of phosphine−borane-mediated hydroboration of CO2. J Am Chem Soc 136:10708–10717

    CAS  PubMed  Google Scholar 

  14. Courtemanche M-A, Pulis AP, Rochette E, Légaré M-A, Stephan DW, Fontaine F-G (2015) Intramolecular B/N frustrated Lewis pairs and the hydrogenation of carbon dioxide. Chem Commun 51:9797–9800

    CAS  Google Scholar 

  15. Dong S, Daniliuc CG, Kehr G, Erker G (2020) Formation of active cyclic five-membered frustrated Phosphane/Borane Lewis pairs and their cycloaddition reactions. ChemEur J 26:745–753

    CAS  Google Scholar 

  16. Dureen MA, Stephan DW (2010) Reactions of boron amidinates with CO2 and CO and other small molecules. J Am Chem Soc 132:13559–13568

    CAS  PubMed  Google Scholar 

  17. Eicherb J, Vankova N (2015) Are intramolecular frustrated Lewis pairs also intramolecular catalysts? A theoretical study on H2 activation. Phys Chem Chem Phys 17:10687–10698

    Google Scholar 

  18. Eros G, Nagy K, Mehdi H, Papai I, Nagy P, Kiraly P, Tarkanyi G, Soos T (2012) Catalytic hydrogenation with frustrated Lewis pairs: selectivity achieved by size-exclusion design of Lewis acids. Chem - Eur J 18:574–585

    CAS  PubMed  Google Scholar 

  19. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA et al. (2016) Gaussian 16, Revision B.01, Gaussian, Inc., Wallingford, CT

  20. Gao B, Feng X, Meng W, Du H (2020) Asymmetric hydrogenation of ketones and enones with chiral Lewis base derived frustrated Lewis pairs. Angew Chem Int Ed 59:2–9

    Google Scholar 

  21. Ghara M, Chattaraj PK (2018a) Fixation of nitrous oxide (N2O) by 1, 4, 2, 5-diazadiborinine: a DFT study. Int J Quantum Chem 118:e25593

    Google Scholar 

  22. Ghara M, Chattaraj PK (2018b) A DFT study on trapping of nitric oxide by 1,3,2,5-diazadiborinine, a frustrated Lewis pair. J Indian Chem Soc 95:1019–1024

    CAS  Google Scholar 

  23. Ghara M, Chattaraj PK (2019) A computational study on hydrogenation of CO2, catalyzed by a bridged B/N frustrated Lewis pair. Struct Chem 30:1067–1077

    CAS  Google Scholar 

  24. Ghara M, Giri S, Chattaraj PK (2020) Cycloaddition Reactions between H2C = CHR (R = H, CN, CH3) and a cyclic P/B frustrated Lewis pair: a DFT study. J Phys Chem A 124:4455–4462

    CAS  PubMed  Google Scholar 

  25. Ghara M, Pan S, Chattaraj PK (2019) A theoretical investigation on boron-ligand cooperation to activate molecular hydrogen by a frustrated Lewis pair and subsequent reduction of carbon dioxide. Phys Chem Chem Phys 21:21267–21277

    CAS  PubMed  Google Scholar 

  26. Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132:154104

    PubMed  Google Scholar 

  27. Grimme S, Kruse H, Goerigk L, Erker G (2010) The mechanism of dihydrogen activation by frustrated Lewis pairs revisited. Angew Chem Int Ed 49:1402–1405

    CAS  Google Scholar 

  28. Hamza A, Stirling A, Rokob TA, Pápai I (2009) Mechanism of hydrogen activation by frustrated Lewis pairs: a molecular orbital approach. Int J Quantum Chem 109:2416–2425

    CAS  Google Scholar 

  29. Hirshfeld FL (1977) Bonded-atom fragments for describing molecular charge densities. TheorChimActa 44:129–138

    CAS  Google Scholar 

  30. Hounjet LJ, Bannwarth C, Garon CN, Caputo CB, Grimme S, Stephan DW (2013) Combinations of ethers and B(C6F5)3 function as hydrogenation catalysts. Angew Chem Int Ed 52:7492–7495

    CAS  Google Scholar 

  31. Jiang CF, Blacque O, Fox T, Berke H (2011) Reversible, metal-free hydrogen activation by frustrated Lewis pairs. Dalton Trans 40:1091–1097

    PubMed  Google Scholar 

  32. Kolychev EL, Bannenberg T, Freytag M, Daniliuc CG, Jones PG, Tamm M (2012) Reactivity of a frustrated Lewis pair and small-molecule activation by an isolable arduengocarbene-B{3,5-(CF3)2C6H3}3 complex. ChemEur J 18:16938–16946

    CAS  Google Scholar 

  33. Longobardi LE, Tang C, Stephan DW (2014) Stoichiometric reductions of alkyl-substituted ketones and aldehydes to borinic esters. Dalton Trans 43:15723–15726

    CAS  PubMed  Google Scholar 

  34. Mahdi T, del Castillo JN, Stephan DW (2013) Metal-free hydrogenation of N-based heterocycles. Organometallics 32:1971–1978

    CAS  Google Scholar 

  35. Mahdi T, Stephan DW (2014) Enabling catalytic ketone hydrogenation by frustrated Lewis pairs. J Am Chem Soc 136:15809–15812

    CAS  PubMed  Google Scholar 

  36. Mahdi T, Stephan DW (2015) Facile protocol for catalytic frustrated Lewis pair hydrogenation and reductive deoxygenation of ketones and aldehydes. Angew Chem Int Ed 54:8511–8514

    CAS  Google Scholar 

  37. Mardirossian N, Head-Gordon M (2016) How accurate are the minnesota density functionals for noncovalent interactions, isomerization energies, thermochemistry, and barrier heights involving molecules composed of main-group elements? J Chem Theory Comput 12:4303–4325

    CAS  PubMed  Google Scholar 

  38. Marenich AV, Cramer CJ, Truhlar DG (2009) Performance of SM6, SM8, and SMD on the SAMPL1 test set for the prediction of small-molecule solvation free energies. J Phys Chem B 113:4538–4543

    CAS  PubMed  Google Scholar 

  39. Mc Cahill JSJ, Welch GC, Stephan DW (2007) Reactivity of “Frustrated Lewis Pairs”: three-component reactions of phosphines, a borane, and olefins. Angew Chem Int Ed 46:4968–4971

    CAS  Google Scholar 

  40. Menard G, Stephan DW (2010) Room temperature reduction of CO2 to methanol by Al-based frustrated Lewis pairs and ammonia borane. J Am Chem Soc 132:1796–1797

    CAS  PubMed  Google Scholar 

  41. Moemming CM, Otten E, Kehr G, Froehlich R, Grimme S, Stephan DW, Erker G (2009) Reversible metal-free carbon dioxide binding by frustrated Lewis pairs. Angew Chem Int Ed 48:6643–6646

    CAS  Google Scholar 

  42. Muck-Lichtenfeld C, Grimme S (2012) Theoretical analysis of cooperative effects of small molecule activation by frustrated Lewis pairs. Dalton Trans 41:9111–9118

    PubMed  Google Scholar 

  43. Paradies J (2014) Metal-free hydrogenation of unsaturated hydrocarbons employing molecular hydrogen. Angew Chem Int Ed 53:3552–3557

    CAS  Google Scholar 

  44. Pereira JCM, Sajid M, Kehr G, Wright AM, Schirmer B, Qu Z-W, Grimme S, Erker G, Ford PC (2014) Reaction of a bridged frustrated Lewis pair with nitric oxide: a kinetics study. J Am Chem Soc 136:513–519

    CAS  PubMed  Google Scholar 

  45. Pérez P, Yepes D, Jaque P, Chamorro E, Domingo LR, Rojas RS, Toro-Labbé A (2015) A computational and conceptual DFT study on the mechanism of hydrogen activation by novel frustrated Lewis pairs. Phys Chem Chem Phys 17:10715–10725

    PubMed  Google Scholar 

  46. Piers WE, Marwitz AJV, Mercier LG (2011) Mechanistic aspects of bond activation with perfluoroarylboranes. Inorg Chem 50:12252–12262

    CAS  PubMed  Google Scholar 

  47. Rajeev R, Sunoj RB (2009) On the origin of reversible hydrogen activation by phosphine–boranes. Chem -Eur J 15:12846–12855

    CAS  PubMed  Google Scholar 

  48. Reed AE, Weinstock RB, Weinhold F (1985) Natural population analysis. J Chem Phys 83:735–746

    CAS  Google Scholar 

  49. Rokob TA, Bakó I, Stirling A, Hamza A, Pápai I (2013) Reactivity models of hydrogen activation by frustrated Lewis pairs: synergistic electron transfers or polarization by electric field? J Am Chem Soc 135:4425–4437

    CAS  PubMed  Google Scholar 

  50. Rokob TA, Hamza A, Pápai I (2009) Rationalizing the reactivity of frustrated Lewis pairs: thermodynamics of H2 activation and the role of acid−base properties. J Am Chem Soc 131:10701–10710

    CAS  PubMed  Google Scholar 

  51. Rokob TA, Hamza A, Stirling A, Pápai I (2009) On the mechanism of B(C6F5)3-catalyzed direct hydrogenation of imines: inherent and thermally induced frustration. J Am Chem Soc 131:2029–2036

    CAS  PubMed  Google Scholar 

  52. Rokob TA, Hamza A, Stirling A, Soos T, Papai I (2008) Turning frustration into bond activation: a theoretical mechanistic study on heterolytic hydrogen splitting by frustrated Lewis pairs. Angew Chem Int Ed 47:2435–2438

    CAS  Google Scholar 

  53. Roy DR, Parthasarathi R, Padmanabhan J, Sarkar U, Subramanian V, Chattaraj PK (2006) Careful scrutiny of the philicity concept. J Phys Chem A 110:1084–1093

    CAS  PubMed  Google Scholar 

  54. Sajid M, Kehr G, Daniliuc CG, Erker G (2014) Formylborane formation with frustrated Lewis pair templates. Angew Chem Int Ed 53:1118–1121

    CAS  Google Scholar 

  55. Samigullin K, Georg I, Bolte M, Lerner H-W, Wagner M (2016) A highly reactive geminal P/B frustrated Lewis pair: expanding the scope to C-X(X=Cl, Br) bond activation. ChemEur J 22:3478–3484

    CAS  Google Scholar 

  56. Schirmer B, Grimme S (2010) Electric field induced activation of H2 - Can DFT do the job? Chem Commun 46:7942–7944

    CAS  Google Scholar 

  57. Schleyer PVR, Maerker C, Dransfeld A, Jiao H, Hommes NJRVE (1996) Nucleus-independent chemical shifts: a simple and efficient aromaticity probe. J Am ChemSoc 118:6317

    CAS  Google Scholar 

  58. Scott DJ, Fuchter MJ, Ashley AE (2014) Nonmetal catalyzed hydrogenation of carbonyl compounds. J Am Chem Soc 136:15813–15816

    CAS  PubMed  Google Scholar 

  59. Segawa Y, Stephan DW (2012) Metal-free hydrogenation catalysis of polycyclic aromatic hydrocarbons. Chem Commun 48:11963–11965

    CAS  Google Scholar 

  60. Sitte NA, Bursch M, Grimme S, Paradies J (2019) Frustrated lewis pair catalyzed hydrogenation of amides: halides as active Lewis base in the metal-free hydrogen activation. J Am Chem Soc 141:159–162

    CAS  PubMed  Google Scholar 

  61. Skara G, De Vleeschouwer F, Geerlings P, De Proft F, Pinter B (2017) Heterolytic splitting of molecular hydrogen by frustrated and classical Lewis pairs: a unified reactivity concept. Sci Rep 7:16024

    PubMed  PubMed Central  Google Scholar 

  62. Spies P, Schwendemann S, Lange S, Kehr G, Frhlich R, Erker G (2008) Metal-free catalytic hydrogenation of enamines, imines, and conjugated phosphinoalkenylboranes. Angew Chem Int Ed 47:7543–7546

    CAS  Google Scholar 

  63. Stephan DW (2008) “Frustrated Lewis pairs”: a concept for new reactivity and catalysis. Org Biomol Chem 6:1535–1539

    CAS  PubMed  Google Scholar 

  64. Stephan DW, Erker G (2010) Frustrated Lewis pairs: metal-free hydrogen activation and more. Angew Chem Int Ed 49:46–76

    CAS  Google Scholar 

  65. Stephan DW, Erker G (2014) Frustrated Lewis pair chemistry of carbon, nitrogen and sulfur oxides. Chem Sci 5:2625–2641

    CAS  Google Scholar 

  66. Stephan DW, Erker G (2015) Frustrated Lewis pair chemistry: development and perspectives. Angew Chem Int Ed 54:6400–6441

    CAS  Google Scholar 

  67. Sumerin V, Schulz F, Atsumi M, Wang C, Nieger M, Leskela M, Repo T, Pyykko P, Rieger B (2008) Molecular tweezers for hydrogen: synthesis, characterization, and reactivity. J Am Chem Soc 130:14117–14119

    CAS  PubMed  Google Scholar 

  68. Theuergarten E, Schlüns D, Grunenberg J, Daniliuc CG, Jones PG, Tamm M (2010) Intramolecular heterolytic dihydrogen cleavage by a bifunctional frustrated pyrazolylborane Lewis pair. Chem Commun 46:8561–8563

    CAS  Google Scholar 

  69. Trunk M, Teichert JF, Thomas A (2017) Room-temperature activation of hydrogen by semi-immobilized frustrated Lewis pairs in microporous polymer networks. J Am Chem Soc 139:3615–3618

    CAS  PubMed  Google Scholar 

  70. Welch GC, Juan RRS, Masuda JD, Stephan DW (2006) Reversible metal-free hydrogen activation. Science 314:1124–1126

    CAS  PubMed  Google Scholar 

  71. Welch GC, Stephan DW (2007) Facile heterolytic cleavage of dihydrogen by phosphines and boranes. J Am Chem Soc 129:1880–1881

    CAS  PubMed  Google Scholar 

  72. Wen M, Huang F, Lu G, Wang Z-X (2013) Density functional theory mechanistic study of the reduction of CO2 to CH4 catalyzed by an ammonium hydridoborate ion pair: CO2 activation via formation of a formic acid entity. Inorg Chem 52:12098–12107

    CAS  PubMed  Google Scholar 

  73. Whittemore SM, Edvenson G, Camaioni DM, Karkamkar A, Neiner D, Parab K, Autrey T (2015) Catalytic reduction of polar substrates without metals: a thermodynamic and kinetic study of heterolytic activation of hydrogen by vacancies in frustrated Lewis pairs. Catal Today 251:28–33

    CAS  Google Scholar 

  74. Wolff NV, Lefevre G, Berthet J-C, Thuery P, Cantat T (2016) Implications of CO2 activation by frustrated Lewis pairs in the catalytic hydroboration of CO2: a view using N/Si+ frustrated Lewis pairs. ACS Catal 6:4526–4535

    Google Scholar 

  75. Wolinski K, Hilton JF, Pulay P (1990) Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations. J Am Chem Soc 112:8251–8260

    CAS  Google Scholar 

  76. Yanez RAA, Kehr G, Daniliuc CG, Schirmer B, Erker G (2014) Formation of a dihydroborole by catalytic isomerization of a divinylborane. Dalton Trans 43:10794–10800

    Google Scholar 

  77. Zhao X, Stephan DW (2011) Olefin–borane “van der Waals Complexes”: intermediates in frustrated Lewis pair addition reactions. J Am Chem Soc 133:12448–12450

    CAS  PubMed  Google Scholar 

  78. Zhao Y, Truhlar DG (2008a) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Acc 120:215–241

    CAS  Google Scholar 

  79. Zhao Y, Truhlar DG (2008b) Exploring the limit of accuracy of the global hybrid meta density functional for main-group thermochemistry, kinetics, and noncovalent interactions. J Chem Theory Comput 4:1849–1868

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are delighted to dedicate this article to Professor Ramon Carbó-Dorca on his 80th birth anniversary. We would like to thank Professors Gernot Frenking, Miquel Solà and Tanmoy Chakraborty for kindly inviting us to contribute this article to the Special Issue of the Theoretical Chemistry Accounts. PKC thanks the DST, New Delhi, for his J. C. Bose National Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pratim Kumar Chattaraj.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published as part of the special collection of articles “Festschrift in honour of Prof. Ramon Carbó-Dorca”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghara, M., Chattaraj, P.K. Can a decrease in anti-aromaticity increase the dihydrogen activation ability of a frustrated phosphorous/borane Lewis pair?: a DFT study. Theor Chem Acc 139, 183 (2020). https://doi.org/10.1007/s00214-020-02698-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-020-02698-6

Keywords

Navigation