Skip to main content
Log in

Chemical bonding in the hexamethylbenzene–SO2+ dication

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

A thorough bonding analysis is performed on the dication [C6(CH3)6SO]2+. The results show that the molecule is best described in terms of covalent interactions between the cations C6(CH3) +6 and SO+, whereby the bonding consists of two dominating contributions. The strongest bonding comes from dative interaction from the HOMO of C6(CH3) +6 to the LUMO of SO+, which has overall σ symmetry. The second significant component is due to electron-sharing bonding between the singly occupied orbitals of the two fragments. The bonding situation may be sketched with the formula \([{\text{C}_{6}}\text{(CH)}_{6}\overrightarrow{-}{\text{SO}}]^{2+}\). The bare dication is thermodynamically unstable with regard to dissociation into two cations. It is kinetically stable due to the activation barrier, and it is further stabilized by counterions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Schenk WA (1987) Sulfur oxides as ligands in coordination compounds. Angew Chem Int Ed 26:98–109

    Article  Google Scholar 

  2. Bisseret P, Blanchard N (2013) Taming sulfur dioxide: a breakthrough for its wide utilization in chemistry and biology. Org Biomol Chem 11:5393–5398

    Article  CAS  Google Scholar 

  3. Deeming AS, Emmett EJ, Richards-Taylor CS, Willis MC (2014) Rediscovering the chemistry of sulfur dioxide: new developments in synthesis and catalysis. Synthesis 46:2701–2710

    Article  Google Scholar 

  4. Lugiņina J (2014) Sulfur dioxide in the past decade. Synlett 25:2962–2963

    Article  Google Scholar 

  5. Chao P, Lemal DM (1973) Sulfur monoxide chemistry. Stereochemistry of the thiirane oxide-diene reaction. J Am Chem Soc 95:920–922

    Article  CAS  Google Scholar 

  6. Schenk WA, Leissner J, Buschka C (1984) Stabilization of sulfur monoxide by coordination to transition metals. Angew Chem Int Ed 23:806–807

    Article  Google Scholar 

  7. Longobardi LE, Wolter V, Stephan DW (2015) Frustrated Lewis pair activation of an N-sulfinylamine: a source of sulfur monoxide. Angew Chem Int Ed 54:809–812

    Article  CAS  Google Scholar 

  8. Bestgen S, Roesky PW (2018) SO2+: closing a gap in sulfur oxide chemistry. Angew Chem Int Ed 57:1148–1150

    Article  CAS  Google Scholar 

  9. Malischewski M, Seppelt K (2017) Isolation and characterization of a non-rigid hexamethylbenzene–SO2+ complex. Angew Chem Int Ed 56:16495–16497

    Article  CAS  Google Scholar 

  10. Ruedenberg K (1962) The physical nature of the chemical bond. Rev Mod Phys 34:326–376

    Article  CAS  Google Scholar 

  11. Hurley AC (1962) Potential energy curves for doubly positive diatomic ions: part II. Predicted states and transitions of N2 2+, O2 2+, and NO2 2+. J Mol Spectrosc 9:18–29

    Article  CAS  Google Scholar 

  12. Edwards AK, Wood RM (1982) Dissociation of N2 2+ ions into N+ fragments. J Chem Phys 76:2938–2942

    Article  CAS  Google Scholar 

  13. Wetmore RW, Boyd RK (1986) Theoretical investigation of the dication of molecular nitrogen. J Phys Chem 90:5540–5551

    Article  CAS  Google Scholar 

  14. Basch H, Hoz S, Goldberg M, Gamss L (1991) Electronic structure and properties of the O2 2+, SO2+ and S2 2+ diatomic dications. Isr J Chem 31:335–343

    Article  CAS  Google Scholar 

  15. Nenajdenko VG, Shevchenko NE, Balenkova ES, Alabugin IV (2003) 1, 2-Dications in organic main group systems. Chem Rev 103:229–282

    Article  CAS  Google Scholar 

  16. Fournier J, Fournier PG, Langford ML, Mousselmal M, Robbe JM, Gandara G (1992) An experimental and theoretical study of the doubly charged ion O2 2+. J Chem Phys 96:3594–3602

    Article  CAS  Google Scholar 

  17. Guilhaus M, Brenton AG, Beynon JH, Rabenovic M, PvR Schleyer (1984) First observation of He2 2+: charge stripping of He2 + using a double-focusing mass spectrometer. J Phys B 17:L605–L610

    Article  CAS  Google Scholar 

  18. Frenking G, Tonner R, Klein S, Takagi N, Shimizu N, Krapp A, Pandey KK, Parameswaran P (2014) New bonding modes of carbon and heavier group 14 atoms Si–Pb. Chem Soc Rev 43:5106–5139

    Article  CAS  Google Scholar 

  19. Frenking G, Hermann M, Andrada DM, Holzmann N (2016) Donor–acceptor bonding in novel low-coordinated compounds of boron and group-14 atoms C–Sn. Chem Soc Rev 45:1129–1144

    Article  CAS  Google Scholar 

  20. Zhao L, Hermann M, Holzmann N, Frenking G (2017) Dative bonding in main group compounds. Coord Chem Rev 344:163–204

    Article  CAS  Google Scholar 

  21. Lewis GN (1938) Acids and bases. J Frankl Inst 226:293–313

    Article  Google Scholar 

  22. Sidgwick NV (1931) Structure of divalent carbon compounds. Chem Rev 9:77–88

    Article  CAS  Google Scholar 

  23. Michalak A, Mitoraj M, Ziegler T (2008) Bond orbitals from chemical valence theory. J Phys Chem A 112:1933–1939

    Article  CAS  Google Scholar 

  24. Mitoraj MP, Michalak A, Ziegler T (2009) A combined charge and energy decomposition scheme for bond analysis. J Chem Theory Comput 5:962–975

    Article  CAS  Google Scholar 

  25. Zhao L, von Hopffgarten M, Andrada DM, Frenking G (2018) Energy decomposition analysis. WIREs Comput Mol Sci 8:e1345

    Article  Google Scholar 

  26. Frenking G, Bickelhaupt FM (2014) The EDA perspective of chemical bonding. In: Frenking G, Shaik S (eds) The chemical bond: fundamental aspects of chemical bonding, Wiley, Weinheim, pp 121–158

    Chapter  Google Scholar 

  27. Scharf LT, Andrada DM, Frenking G, Gessner VH (2017) The bonding situation in metalated ylides. Chem Eur J 23:4422–4434

    Article  CAS  Google Scholar 

  28. Hermann M, Frenking G (2017) Carbones as ligands in novel main-group compounds E[C(NHC)2]2 (E = Be, B+, C2+, N3+, Mg, Al+, Si2+, P3+): a theoretical study. Chem Eur J 23:3347–3356

    Article  CAS  Google Scholar 

  29. Georgiou DC, Zhao L, Wilson DJD, Frenking G, Dutton JL (2017) NHC-stabilised acetylene: How far can the analogy be pushed? Chem Eur J 23:2926–2934

    Article  CAS  Google Scholar 

  30. Andrada DM, Casalz-Sainz JL, Pendas AM, Frenking G (2018) Dative and electron-sharing bonding in C2F4. Chem Eur J 24:9083–9089

    Article  CAS  Google Scholar 

  31. Yang T, Andrada DM, Frenking G (2018) Dative versus electron-sharing bonding in N-oxides and phosphane oxides R3EO and relative energies of the R2EOR isomers (E = N, P; R = H, F, Cl, Me, Ph). A theoretical study. Phys Chem Chem Phys 20:11856–11866

    Article  CAS  Google Scholar 

  32. Jerabek P, Schwerdtfeger P, Frenking G (2019) Dative and electron-sharing bonding in transition metal compounds. J Comput Chem 40:247–264

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support by the Deutsche Forschungsgemeinschaft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gernot Frenking.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published as part of the special collection of articles derived from the 11th Congress on Electronic Structure: Principles and Applications (ESPA-2018).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 70 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pecher, L., Pan, S. & Frenking, G. Chemical bonding in the hexamethylbenzene–SO2+ dication. Theor Chem Acc 138, 47 (2019). https://doi.org/10.1007/s00214-019-2434-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-019-2434-1

Keywords

Navigation