Skip to main content
Log in

Dipolar cycloadditions and the “|Δμ| big is good” rule: a computational study

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

We analyze the validity of the “|Δμ| big is good” rule over a set of different 1,3-dipolar cycloaddition reactions. We consider different factors that could be important in the practical application of this principle, chiefly: intermolecular interactions and geometry reorganization. We observe that while a simple model of the reagent–reagent perturbations suffices to describe charge transfer in these reactions, it fails when applied to the “|Δμ| big is good” rule. On the contrary, geometry changes are proven to be of paramount importance and only when they are correctly taken care of the “|Δμ| big is good” rule provides accurate predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Lide DR (1990) CRC handbook of chemistry and physics. CRC Press, Boca Raton

    Google Scholar 

  2. Borden WT (1975) Modern molecular orbital theory for organic chemists. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  3. Pearson RG (1969) Surv Progr Chem 5:1–52

    CAS  Google Scholar 

  4. Chang R, College W (2002) Química. McGraw Hill Interamericana, Mexico DF

    Google Scholar 

  5. Solomons TWG (1994) Fundamentals of organic chemistry. Wiley, New York

    Google Scholar 

  6. Hohenberg P, Kohn W (1964) Phys Rev 136:B864

    Google Scholar 

  7. Kohn W, Sham LJ (1965) Phys Rev 140:A1133

    Google Scholar 

  8. Dreizler RM, Gross EKU (1990) Density functional theory: an approach to the quantum many-body problem. Springer-Verlag, Berlin

    Google Scholar 

  9. Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Oxford UP, New York

    Google Scholar 

  10. Geerlings P, De Proft F, Langenaeker W (2003) Chem Rev 103:1793

    CAS  PubMed  Google Scholar 

  11. Ayers PW, Anderson JSM, Bartolotti LJ (2005) Int J Quantum Chem 101:520

    CAS  Google Scholar 

  12. Johnson PA, Bartolotti LJ, Ayers PW, Fievez T (2012) Geerlings P. In: Gatti C, Macchi P (eds) Modern charge density analysis. Springer, New York, p 715

    Google Scholar 

  13. Miranda-Quintana RA (2018) In: Islam N, Kaya S (eds) Conceptual density functional theory and its applications in the chemical domain. Apple Academic Press, New Jersey, p 15

    Google Scholar 

  14. Chattaraj PK (ed) (2009) Chemical reactivity theory: a density functional view. CRC Press, Boca Raton

    Google Scholar 

  15. Chermette H (1999) J Comput Chem 20:129

    CAS  Google Scholar 

  16. Fuentealba P, Cárdenas C (2015) In: Springborg M (ed) Chemical modelling. The Royal Society of Chemistry, vol 11, p 151

  17. Liu SB (2009) Acta Phys Chim Sin 25:590

    CAS  Google Scholar 

  18. Sanderson RT (1951) Science 114:670

    CAS  PubMed  Google Scholar 

  19. Donnelly RA, Parr RG (1978) J Chem Phys 69:4431

    CAS  Google Scholar 

  20. Pearson RG (1963) J Am Chem Soc 85:3533

    CAS  Google Scholar 

  21. Pearson RG (1968) J Chem Educ 45:643

    CAS  Google Scholar 

  22. Pearson RG (1968) J Chem Educ 45:581

    CAS  Google Scholar 

  23. Pearson RG (1969) Surv Progr Chem 5:1

    CAS  Google Scholar 

  24. Pearson RG (1966) Science 151:172

    CAS  PubMed  Google Scholar 

  25. Pearson RG (1967) Chem Br 3:103

    CAS  Google Scholar 

  26. Ayers PW (2005) J Chem Phys 122:141102

    PubMed  Google Scholar 

  27. Ayers PW, Parr RG, Pearson RG (2006) J Chem Phys 124:194107

    PubMed  Google Scholar 

  28. Ayers PW (2007) Faraday Discuss 135:161

    CAS  PubMed  Google Scholar 

  29. Ayers PW, Cardenas C (2013) J Chem Phys 138:181106

    PubMed  Google Scholar 

  30. Cardenas C, Ayers PW (2013) PCCP 15:13959

    CAS  PubMed  Google Scholar 

  31. Chattaraj PK, Lee H, Parr RG (1855) J Am Chem Soc 1991:113

    Google Scholar 

  32. Gazquez JL, Mendez F (1994) J Phys Chem 98:4591

    CAS  Google Scholar 

  33. Mendez F, Gazquez JL (1994) J Am Chem Soc 116:9298

    CAS  Google Scholar 

  34. Pearson RG (1987) J Chem Educ 64:561

    CAS  Google Scholar 

  35. von Szentpály L (2017) J Mol Model 23:217

    Google Scholar 

  36. Parr RG, Chattaraj PK (1854) J Am Chem Soc 1991:113

    Google Scholar 

  37. Ayers PW, Parr RG (2010) J Am Chem Soc 2000:122

    Google Scholar 

  38. Pearson RG, Palke WE (1992) J Phys Chem 96:3283

    CAS  Google Scholar 

  39. Chattaraj PK (1996) Proc Indian Natl Sci Acad Part A 62:513

    CAS  Google Scholar 

  40. Torrent-Sucarrat M, Luis JM, Duran M, Sola M (2001) J Am Chem Soc 123:7951

    CAS  PubMed  Google Scholar 

  41. Torrent-Sucarrat M, Luis JM, Duran M, Sola M (2002) J Chem Phys 117:10561

    CAS  Google Scholar 

  42. Chattaraj PK, Sarkar U, Roy DR (2006) Chem Rev 106:2065

    CAS  PubMed  Google Scholar 

  43. Morell C, Labet V, Grand A, Chermette H (2009) PCCP 11:3414

    Google Scholar 

  44. Parthasarathi R, Elango M, Subramanian V, Chattaraj PK (2005) Theor Chem Acc 113:257

    CAS  Google Scholar 

  45. Chamorro E, Chattaraj PK, Fuentealba P (2003) J Phys Chem A 107:7068

    CAS  PubMed  Google Scholar 

  46. Noorizadeh S (2007) Chin J Chem 25:1439

    CAS  Google Scholar 

  47. Noorizadeh S (2007) J Phys Org Chem 20:514

    CAS  Google Scholar 

  48. Miranda-Quintana RA (2017) J Chem Phys 146:214113

    PubMed  Google Scholar 

  49. Miranda-Quintana RA, Chattaraj PK, Ayers PW (2017) J Chem Phys 147:124103

    PubMed  Google Scholar 

  50. Miranda-Quintana RA (2017) J Chem Phys 146:046101

    PubMed  Google Scholar 

  51. Miranda-Quintana RA, Ayers PW (2018) J Chem Phys 148:196101

    PubMed  Google Scholar 

  52. Chattaraj PK, Ayers PW, Melin J (2007) PCCP 9:3853

    CAS  PubMed  Google Scholar 

  53. Chattaraj PK, Ayers PW (2005) J Chem Phys 123:086101

    PubMed  Google Scholar 

  54. Perdew JP, Parr RG, Levy M, Balduz JL Jr. (1982) Phys Rev Lett 49:1691

    CAS  Google Scholar 

  55. Parr RG, Donnelly RA, Levy M, Palke WE (1978) J Chem Phys 68:3801

    CAS  Google Scholar 

  56. Parr RG (1994) Int J Quantum Chem 49:739

    Google Scholar 

  57. Miranda-Quintana RA, Zadeh FH, Ayers PW (2018) J Phys Chem Lett 9:4344

    CAS  PubMed  Google Scholar 

  58. Miranda-Quintana RA, Ayers PW (2018) In preparation

  59. Parr RG, Pearson RG (1983) J Am Chem Soc 105:7512

    CAS  Google Scholar 

  60. Miranda-Quintana RA, Ayers PW (2016) J Chem Phys 144:244112

    PubMed  Google Scholar 

  61. Heidar Zadeh F, Miranda-Quintana RA, Verstraelen T, Bultinck P, Ayers PW (2016) J Chem Theory Comput 12:5777

    CAS  PubMed  Google Scholar 

  62. Miranda-Quintana RA, Ayers PW (2018) In: Islam N, Kaya S (eds) Conceptual density functional theory and its applications in the chemical domain. Apple Academic Press, New Jersey, p 61

    Google Scholar 

  63. Miranda-Quintana RA (2017) Theor Chem Acc 136:76

    Google Scholar 

  64. Miranda-Quintana RA, Ayers PW (2016) PCCP 18:15070

    CAS  PubMed  Google Scholar 

  65. Miranda-Quintana RA, Ayers PW (2016) Theor Chem Acc 135:172

    Google Scholar 

  66. Miranda-Quintana RA, González MM, Ayers PW (2016) PCCP 18:22235

    CAS  PubMed  Google Scholar 

  67. Ayers PW, Miranda-Quintana RA, Heidar Zadeh F, Fias S, Chapman AEA, Cardenas C, Liu S, Morell C (2018) In preparation

  68. Parr RG, Yang WT (1984) J Am Chem Soc 106:4049

    CAS  Google Scholar 

  69. Ayers PW, Levy M (2000) Theor Chem Acc 103:353

    CAS  Google Scholar 

  70. Morell C, Grand A, Toro-Labbé A (2005) J Phys Chem A 109:205

    CAS  PubMed  Google Scholar 

  71. Morell C, Grand A, Toro-Labbé A (2006) Chem Phys Lett 425:342

    CAS  Google Scholar 

  72. Fuentealba P, Cardenas C, Pino-Rios R (2016) Tiznado W. In: Chauvin R, Lepetit C, Silvi B, Alikhani E (eds) Applications of topological methods in molecular chemistry. Springer International Publishing, Cham, p 227

    Google Scholar 

  73. Cardenas C, Tiznado W, Ayers PW, Fuentealba P (2011) J Phys Chem A 115:2325

    CAS  PubMed  Google Scholar 

  74. Osorio E, Ferraro MB, Oña O, Cardenas C, Fuentealba P, Tiznado WJ (2011) Chem Theory Comput 7:3995

    CAS  Google Scholar 

  75. Houk KN, Sims J, Watts CR, Luskus LJ (1973) J Am Chem Soc 95:7301

    CAS  Google Scholar 

  76. Houk KN, Sims J, Duke RE Jr., Strozier RW, George JK (1973) J Am Chem Soc 95:7287

    CAS  Google Scholar 

  77. Frisch MJ, Trucks GW; Schlegel HB; Scuseria GE; Robb MA; Cheeseman JR; Scalmani G; Barone V; Mennucci B; Petersson GA; Nakatsuji H; Caricato M, Li X, Hratchian HP, Iszmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JrJA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ, Gaussian Inc. (2009) Wallingford CT

  78. González MM, Hernández-Castillo D, Montero-Cabrera LA, Miranda-Quintana RA (2017) Int J Quantum Chem 117:e25444

    Google Scholar 

  79. Beno BR, Houk KN, Singleton DA (1996) J Am Chem Soc 118:9984

    CAS  Google Scholar 

  80. Damoun S, VandeWoude G, Mendez F, Geerlings P (1997) J Phys Chem A 101:886

    CAS  Google Scholar 

  81. Ess DH, Houk KN (2007) J Am Chem Soc 129:10646

    CAS  PubMed  Google Scholar 

  82. Ess DH, Houk KN (2008) J Am Chem Soc 130:10187

    CAS  PubMed  Google Scholar 

  83. Schoenebeck F, Ess DH, Jones GO, Houk KN (2009) J Am Chem Soc 131:8121

    CAS  PubMed  Google Scholar 

  84. Xu L, Doubleday CE, Houk KN (2010) J Am Chem Soc 132:3029

    CAS  PubMed  Google Scholar 

  85. Nakatsuji H (1974) J Am Chem Soc 96:24

    CAS  Google Scholar 

  86. Nakatsuji H (1974) J Am Chem Soc 96:30

    CAS  Google Scholar 

Download references

Acknowledgements

We thank NSERC and Compute Canada for support. RAMQ acknowledges funding from York University in the form of a York Science Fellowship. Also, we would like to dedicate this work to Pratim Kumar Chattaraj, whose relentless work in C-DFT has contributed to elucidate the physical basis of many important reactivity principles.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramón Alain Miranda-Quintana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miranda-Quintana, R.A., Ayers, P.W. Dipolar cycloadditions and the “|Δμ| big is good” rule: a computational study. Theor Chem Acc 137, 177 (2018). https://doi.org/10.1007/s00214-018-2391-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-018-2391-0

Keywords

Navigation