Skip to main content
Log in

Effect of hydrogen bond on the viscosity of ionic liquid studied by combination of molecular dynamics and quantum chemistry

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The viscosity is one of the most important properties of ionic liquids (ILs). To uncover the relationship between structure and viscosity from the molecular level is beneficial to designing the ILs with desired viscosity by choice of different cation and anion. The influence of hydrogen bonds on the viscosity for five pyridine-based ILs, [EPy][OTf], [EPy][NTf2], [BPy][OTf], [BPy][NTf2], and [BPy][BF4], is theoretically studied by combination of molecular dynamics and quantum chemistry. Effect of different alkyl chain lengths, cations, and anions on the viscosity is compared to find the critical item. Besides the molecular structure, the roles of hydrogen bond played in the viscosity are analyzed by various factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Platzer S, Kar M, Leyma R, Chib S, Roller A, Jirsa F, Krachler R, MacFarlane DR, Kandioller W, Keppler BKJ (2017) Hazard Mater 324:241–249

    Article  CAS  Google Scholar 

  2. Tahara H, Baba R, Iwanaga K, Sagara T, Murakami H (2017) Chem Commun 53:2455–2458

    Article  CAS  Google Scholar 

  3. Rani MSA, Hassan NH, Ahmad A, Kaddami H, Mohamed NS (2016) Ionics 22:1855–1864

    Article  CAS  Google Scholar 

  4. Zhang T, Wen ZYA (2017) J Phys Chem C 121:5968–5973

    Article  CAS  Google Scholar 

  5. Karousos DS, Labropoulos AI, Sapalidis A, Kanellopoulos NK, Iliev B, Schubert TJS, Romanos GE (2017) Chem Eng J 313:777–790

    Article  CAS  Google Scholar 

  6. van Rantwijk F, Sheldon RA (2007) Chem Rev 107:2757–2785

    Article  Google Scholar 

  7. Francis W, Wagner K, Beirne S, Officer DL, Wallace GG, Florea L, Diamond D (2017) Sensor Actuat B Chem 239:1069–1075

    Article  CAS  Google Scholar 

  8. Qian WJ, Texter J, Yan F (2017) Chem Soc Rev 46:1124–1159

    Article  CAS  Google Scholar 

  9. Vishwakarma NK, Singh AK, Hwang YH, Ko DH, Kim JO, Babu AG, Kim DP (2017) Nat Commun. doi:10.1038/ncomms14676

    Google Scholar 

  10. Liu MS, Lan JW, Liang L, Sun JM, Arai M (2017) J Catal 347:138–147

    Article  CAS  Google Scholar 

  11. Mu LW, Shi YJ, Guo XJ, Zhuang W, Chen L, Ji T, Hua J, Wang HY, Zhu JH (2017) J Colloid Interface Sci. doi:10.1016/j.jcis.2017.03.044

    Google Scholar 

  12. Ventura SPM, e Silva FA, Quental MV, Mondal D, Freire MG, Coutinho JAP (2017) Chem Rev. doi:10.1021/acs.chemrev.6b00550

    Google Scholar 

  13. An XW, Du X, Duan DH, Shi LJ, Hao XG, Lu HF, Guan GQ, Peng CJ (2017) Phys Chem Chem Phys 19:1134–1142

    Article  CAS  Google Scholar 

  14. Al Kaisy GMJ, Mutalib MIA, Leveque JM, Rao TVVLN (2017) J Mol Liq 230:565–573

    Article  CAS  Google Scholar 

  15. García-Garabal S, Vila J, Rilo E, Domínguez-Pérez M, Segade L, Tojo E, Verdía P, Varela LM, Cabeza O (2017) Electrochim Acta 231:94–102

    Article  Google Scholar 

  16. Fillion JJ, Bennett JE, Brennecke JF (2017) Chem Eng Data 62:608–622

    Article  CAS  Google Scholar 

  17. Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJC (2005) J Comput Chem 26:1701–1718

    Article  Google Scholar 

  18. Darden T, York D, Pedersen L (1993) J Chem Phys 98:10089–10092

    Article  CAS  Google Scholar 

  19. Wang JM, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) J Comput Chem 25:1157–1174

    Article  CAS  Google Scholar 

  20. Sprenger KG, Jaeger VW, Pfaendtner J (2015) J Phys Chem B 119:5882–5895

    Article  CAS  Google Scholar 

  21. Ryckaert JP, Ciccotti G, Berendsen HJC (1977) J Comput Phys 23:327–341

    Article  CAS  Google Scholar 

  22. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr., Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2010) Gaussian 09, Revision C.01. Gaussian Inc., Wallingford

    Google Scholar 

  23. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  24. Perdew JP, Burke K, Wang Y (1996) Phys Rev B: Condens Matter 54:16533–16539

    Article  CAS  Google Scholar 

  25. Gill PMW, Johnson BG, Pople JA, Frisch MJ (1992) Chem Phys Lett 197:499–505

    Article  CAS  Google Scholar 

  26. Song DY, Chen J (2014) J Chem Thermodyn 77:137–143

    Article  CAS  Google Scholar 

  27. Qian WC, Xu YJ, Xie B, Ge Y, Shu HG (2017) Int J Greenh Gas Control 56:194–201

    Article  CAS  Google Scholar 

  28. Chiappe C, Margari P, Mezzetta A, Pomelli CS, Koutsoumpos S, Papamichael M, Giannios P, Moutzouris K (2017) Phys Chem Chem Phys 19:8201–8209

    Article  CAS  Google Scholar 

  29. Zhang Y, Xue LJ, Khabaz F, Doerfler R, Quitevis EL, Khare R, Maginn EJ (2015) J Phys Chem B 119:14934–14944

    Article  CAS  Google Scholar 

  30. Zhang Y, Maginn EJ (2015) J Phys Chem Lett 6:700–705

    Article  CAS  Google Scholar 

  31. Ramya KR, Kumar P, Venkatnathan A (2015) J Phys Chem B 119:14800–14806

    Article  CAS  Google Scholar 

  32. Sánchez PB, Currás MR, Mato MM, Salgado J, García J (2015) Fluid Phase Equilib 405:37–45

    Article  Google Scholar 

  33. Kitaoka S, Nobuoka K, Yoshiiwa N, Harran T, Ishikawa Y (2010) Chem Lett 39:1142–1143

    Article  CAS  Google Scholar 

  34. Bandrés I, Royo FM, Gascón I, Castro M, Lafuente C (2010) J Phys Chem B 114:3601–3607

    Article  Google Scholar 

  35. Shang DW, Zhang XP, Zeng SJ, Jiang K, Gao HS, Dong HF, Yang QY, Zhang SJ (2017) Green Chem 19:937–945

    Article  CAS  Google Scholar 

  36. Bader RFW (2002) Encyclopedia of computational chemistry. Wiley, New York. doi:10.1002/0470845015.caa012

    Google Scholar 

  37. Johnson ER, Keinan S, Mori-Sánchez P, Contreras-García J, Cohen AJ, Yang WT (2010) J Am Chem Soc 132:6498–6506

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the National Supercomputing Center in Shenzhen (Shenzhen Cloud Computing Center) for providing computational resources and softwares. This work was supported by the National Natural Science Foundation of China (21376063, 21476061, 21503069, 21676071), Program for He’nan Innovative Research Team in University (15IRTSTHN005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li Wang or Jinglai Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 3138 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Y., Yang, H., Guo, J. et al. Effect of hydrogen bond on the viscosity of ionic liquid studied by combination of molecular dynamics and quantum chemistry. Theor Chem Acc 136, 110 (2017). https://doi.org/10.1007/s00214-017-2138-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-017-2138-3

Keywords

Navigation