Skip to main content
Log in

Modelization of the \(\hbox {H}_{2}\) adsorption on graphene and molecular dynamics simulation

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

In the search for efficient molecular dynamics simulation models both simplicity and acceptable accuracy matter. In the present study, a model of the graphene-\(\hbox {H}_2\) physisorption system is used to explore its performance and limitations under canonical NVT and microcanonical NVE simulation conditions. The model implies several simplifications that can be summarized in (a) a single ideal planar frozen graphene-like layer of C atoms, (b) rigid rotor \(\hbox {H}_2\) molecules and (c) interaction potentials written as C–H2 and \(\hbox {H}_2\)\(\hbox {H}_2\) site–site Improved Lennard-Jones potentials parameterized to reproduce DFT calculations. This model can be used in a variety of molecular dynamics simulation conditions, both in NVT and NVE ensembles. Such simulations lead to the formation of a single layer of adsorbed \(\hbox {H}_2\) molecules in dynamically stable equilibrium with a fluid-phase region. In addition, the incipient formation of secondary layers for high-density conditions is also observed. Some properties as average pressure, temperatures and fluid-phase densities are discussed as well as possible improvements of the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Nijkamp M, Raaymakers J, van Dillen A, de Jong K (2001) Appl Phys A 72(5):619. doi:10.1007/s003390100847

    Article  CAS  Google Scholar 

  2. Cracknell RF (2001) Phys Chem Chem Phys 3:2091. doi:10.1039/B100144M

    Article  CAS  Google Scholar 

  3. Patchkovskii S, John ST, Yurchenko SN, Zhechkov L, Heine T, Seifert G (2005) PNAS 102:10439. doi:10.1073/pnas.0501030102

    Article  CAS  Google Scholar 

  4. Peng L, Morris JR (2010) J Phys Chem C 114(36):15522. doi:10.1021/jp104595m

    Article  CAS  Google Scholar 

  5. Tozzini V, Pellegrini V (2011) J Phys Chem C 115(51):25523. doi:10.1021/jp208262r

    Article  CAS  Google Scholar 

  6. Cabria I, López M, Alonso J (2011) Int J Hydrog Energy 36(17):10748. doi:10.1016/j.ijhydene.2011.05.125. International conference on hydrogen production (ICH2P)-2010. http://www.sciencedirect.com/science/article/pii/S0360319911013747

  7. Cabria I, López MJ, Alonso JA (2007) Carbon 45(13):2649. doi:10.1016/j.carbon.2007.08.003. http://www.sciencedirect.com/science/article/pii/S0008622307003855

  8. Shan M, Xue Q, Jing N, Ling C, Zhang T, Yan Z, Zheng J (2012) Nanoscale 4:5477. doi:10.1039/C2NR31402A

    Article  CAS  Google Scholar 

  9. Nguyen BH, Nguyen VH (2016) Adv Nat Sci Nanosci Nanotechnol 7(2):023002. http://stacks.iop.org/2043-6262/7/i=2/a=023002

  10. Wang Y, Yang Q, Li J, Yang J, Zhong C (2016) Phys Chem Chem Phys 18:8352. doi:10.1039/C5CP06569K

    Article  CAS  Google Scholar 

  11. Gatica SM, Nekhai A, Scrivener A (2016) Phys Chem Chem Phys 21:662

    Google Scholar 

  12. Jena P (2011) J Phys Chem Lett 2(3):206. doi:10.1021/jz1015372

    Article  CAS  Google Scholar 

  13. Petucci J, LeBlond C, Karimi M, Vidali G (2013) J Chem Phys 139:044706(1)

    Article  Google Scholar 

  14. Kemp K, Seema H, Saleh M, Le N, Mahesh K, Chandra V, Kim K (2013) Nanoscale 5:3149

    Article  CAS  Google Scholar 

  15. Henwood D, Carey JD (2007) Phys Rev B 76:049901. doi:10.1103/PhysRevB.76.049901

    Article  CAS  Google Scholar 

  16. Simon JM, Haas OE, Kjelstrup S (2010) J Phys Chem C 114:10212

    Article  CAS  Google Scholar 

  17. Trinh T, Vlugt J, Hägg M, Debeaux D, Kjelstrup S (2013) In: 12th Joint European thermodynamics conference. pp 514–518

  18. Wang Q, Johnson K (1999) J Chem Phys 110:577

    Article  CAS  Google Scholar 

  19. Wu CD, Fang TH, Lo JY, Feng YL (2013) J Mol Model 19(9):3813. doi:10.1007/s00894-013-1918-5

    Article  CAS  Google Scholar 

  20. Fang TH, Chang WJ, Huang CC, Sun WL (2016) Int J Hydrog Energy 41(31):13771. doi:10.1016/j.ijhydene.2016.05.300. http://www.sciencedirect.com/science/article/pii/S0360319916304086

  21. Lugo G, Cuesta IG, Sánchez Marín J, Sánchez de Merás A (2016) J Phys Chem A 120(27):4951. doi:10.1021/acs.jpca.5b12589

    Article  CAS  Google Scholar 

  22. Umadevi D, Sastry GN (2014) Curr Sci 106(9):1224

    CAS  Google Scholar 

  23. https://energy.gov/eere/fuelcells/materials-based-hydrogen-storage. Retrieved Dec 2016

  24. Schimmel HG, Kearley GJ, Nijkamp MG, Visser CT, de Jong KP, Mulder FM (2003) Chem A Eur J 9(19):4764. doi:10.1002/chem.200304845

    Article  CAS  Google Scholar 

  25. Mosher K, He J, Liu Y, Rupp E, Wilcox J (2013) Int J Coal Geol 109–110:36. doi:10.1016/j.coal.2013.01.001. http://www.sciencedirect.com/science/article/pii/S0166516213000049

  26. Kocman M, Jurecka P, Dubecky M, Otyepka M, Cho Y, Kim KS (2015) Phys Chem Chem Phys 17:6423. doi:10.1039/C4CP04354E

    Article  CAS  Google Scholar 

  27. Tozzini V, Pellegrini V (2013) Phys Chem Chem Phys 15:80

    Article  CAS  Google Scholar 

  28. Novoselov K, Geim A, Morozov S, Jiang Y, Zhang D, Dubonos S, Grigorieva I, Firsov A (2004) Science 306:666

    Article  CAS  Google Scholar 

  29. Geim A, Novoselov K (2007) Nat Mater 81:183

    Article  Google Scholar 

  30. Castro Neto A, Guinea F, Peres N (2009) Rev Mod Phys 81:109

    Article  CAS  Google Scholar 

  31. Thierfelder C, Witte M, Blankenburg S, Rauls E, Schmidt W (2011) Surf Sci 605:746

    Article  CAS  Google Scholar 

  32. Lago NF, Albertí M, Laganà A, Lombardi A, Pacifici L, Costantini A (2014) In: Murgante B, Misra S, Rocha AMAC, Torre C, Rocha JG, Falcão MI, Taniar D, Apduhan BO, Gervasi O (ed) Computational science and its applications—CCSA 2014: 14th international conference, Guimarães, Portugal, June 30–July 3, 2014, Proceedings, part I. Springer, Cham, pp 585–600

  33. Pirani P, Brizi S, Roncaratti L, Casavecchia P, Cappelletti D, Vecchiocattivi F (2008) Phys Chem Chem Phys 10:5489

    Article  CAS  Google Scholar 

  34. Faginas Lago N, Huarte Larrañaga F, Albert M (2009) Eur Phys J D 55(1):75. doi:10.1140/epjd/e2009-00215-5

    Article  Google Scholar 

  35. Albertí M, Costantini A, Laganà A, Pirani F (2012) J Phys Chem B 116(14):4220. doi:10.1021/jp301124z

    Article  Google Scholar 

  36. Albertí M, Aguilar A, Lucas JM, Pirani F (2009) Theor Chem Acc 123:21

    Article  Google Scholar 

  37. Albertí M, Aguilar A, Cappelletti D, Laganà A, Pirani F (2009) Int J Mass Spectrom 280:50

    Article  Google Scholar 

  38. Yeamin MB, Faginas-Lago N, Albertí M, Cuesta IG, Sánchez-Marín J, Sánchez de Merás A (2014) RSC Adv 4:54447. doi:10.1039/C4RA08487J

    Article  CAS  Google Scholar 

  39. Smith W, Yong C, Rodger P (2002) Mol Simul 28(5):385. doi:10.1080/08927020290018769. http://www.cse.clrc.ac.uk/ccg/software/DL_POLY/index.shtm

  40. Heine T, Zhechkov L, Seifert G (2004) Phys Chem Chem Phys 6:980. doi:10.1039/B316209E

    Article  CAS  Google Scholar 

  41. Faginas-Lago N, Albertí M, Costantini A, Laganà A, Lombardi A, Pacifici L (2014) J Mol Model 20(7):2226. doi:10.1007/s00894-014-2226-4

    Article  Google Scholar 

  42. Faginas-Lago N, Lombardi A, Albert M, Grossi G (2015) J Mol Liq 204:192. doi:10.1016/j.molliq.2015.01.029. http://www.sciencedirect.com/science/article/pii/S0167732215000409

  43. Lago NF, Albertí M, Laganà A, Lombardi A (2013) In: Murgante B, Misra S, Carlini M, Torre CM, Nguyen HQ, Taniar D, Apduhan BO, Gervasi O (ed) Computational science and its applications –ICCSA 2013: 13th international conference, Ho Chi Minh City, Vietnam, June 24–27, 2013, Proceedings, part I. Springer Berlin, pp 1–15. doi:10.1007/978-3-642-39637-3_1

  44. Grimme S (2006) J Comput Chem 27:1787

    Article  CAS  Google Scholar 

  45. Huber C, Schaefer A, Ahlrichs R (1994) J Chem Phys 100:5829

    Article  Google Scholar 

  46. Ting VP, Ramírez AJ, Bimbo N, Sharpe JE, Noguera-Díaz A, Presser V, Rudic S, Mays TJ (2015) ACS Nano 9:8249

    Article  CAS  Google Scholar 

  47. Georgakis M, Stavropoulos G, Sakellaropoulos G (2007) Int J Hydrog Energy 32:1999

    Article  CAS  Google Scholar 

  48. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani VBG, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JJE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramilloa J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision D.01. Gaussian Inc., Wallingford

    Google Scholar 

  49. Boys SF, Bernardi F (1970) Mol Phys 19:553

    Article  CAS  Google Scholar 

  50. Shen V, Siderius WD, Krekelberg W, Hatch EHW (2016) NIST standard reference database number 173, National Institute of Standards and Technology. https://www.nist.gov/programs-projects/nist-standard-reference-simulation-website. Retrieved Dec 2016

Download references

Acknowledgements

N. F. -L. acknowledges financial support from Fondazione Cassa di Risparmio di Perugia (P 2014/1255, ACT 2014/6167) and the OU Supercomputing Center for Education and Research (OSCER) at the University of Oklahoma (OU) for the computing time. M. A. acknowledges financial support from the Ministerio de Educacion y Ciencia (Spain, Project CTQ2013-41307-P) and the Generalitat de Catalunya (2009SGR-17). M. B. Y. acknowledges the EACEA for an Erasmus Mundus grant in the 159680-1-2004-ES ERA MUNDUS-EMMC TCCM.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. Faginas-Lago or Alfredo Sánchez de Merás.

Additional information

Published as part of the special collection of articles derived from the 10th Congress on Electronic Structure: Principles and Applications (ESPA-2016).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faginas-Lago, N., Yeamin, M.B., Sánchez-Marín, J. et al. Modelization of the \(\hbox {H}_{2}\) adsorption on graphene and molecular dynamics simulation. Theor Chem Acc 136, 91 (2017). https://doi.org/10.1007/s00214-017-2110-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-017-2110-2

Keywords

Navigation