Skip to main content
Log in

Understanding the carbenoid-type reactivity of nitrile ylides in [3+2] cycloaddition reactions towards electron-deficient ethylenes: a molecular electron density theory study

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The [3+2] Cycloaddition (32CA) reaction of nitrile ylide (NY) 10 with electron-deficient ethylene 11 has been studied within the molecular electron density theory through DFT calculations at the MPWB1K/6-31G(d) computational level. A structural analysis of NY 10 indicates that this three-atom component has a carbenoid structure, allowing its participation in carbenoid-type (cb-type) 32CA reactions. This 32CA reaction takes place through a one-step mechanism with very low activation energy, 2.3 kcal mol−1. In gas phase, this 32CA reaction is not stereoselective and has low regioselectivity. Inclusion of solvent effects does not modify the activation energy, but increases the meta regioselectivity in clear agreement with the experimental outcomes. Electron localisation function topological analysis for the formation of the two C–C single bonds along the four competitive channels associated with this 32CA reaction makes it possible to characterise two dissimilar mechanisms. Along the more favourable meta regioisomeric channels, the 32CA reaction takes place through a two-stage one-step mechanism, while along the ortho regioisomeric channels it takes place via a synchronous C–C bond formation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Fig. 1
Fig. 2
Scheme 6
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Huisgen R (1984) In: Padwa A (ed) 1,3-dipolar cycloaddition chemistry, vol 1. Wiley, New York

    Google Scholar 

  2. Carruthers W (1990) In: Baldwin JE, Magnus PD (eds) Cycloaddition reactions in organic synthesis. Pergamon, Oxford

    Google Scholar 

  3. Padwa A, Pearson WH (eds) (2002) Synthetic applications of 1,3-dipolar Cycloaddition chemistry toward heterocycles and natural products, vol 59. Wiley, New York

    Google Scholar 

  4. Bailly C (2004) Curr Med Chem-AntiCancer Agents 4:364–378

    Google Scholar 

  5. Bellina F, Rossi R (2006) Tetrahedron 62:7213–7256

    Article  CAS  Google Scholar 

  6. Domingo LR, Emamian SR (2014) Tetrahedron 70:1267–1273

    Article  CAS  Google Scholar 

  7. Gothelf KV, Jorgensen KA (1998) Chem Rev 98:863–910

    Article  CAS  Google Scholar 

  8. Domingo LR, Sáez JA (2009) Org Biomol Chem 7:3576–3583

    Article  CAS  Google Scholar 

  9. Ess DH, Houk KN (2008) J Am Chem Soc 130:10187–10198

    Article  CAS  Google Scholar 

  10. Ess DH, Houk KN (2008) J Am Chem Soc 129:10646–10647

    Article  Google Scholar 

  11. Osuna S, Houk KN (2009) Chem Eur J 15:13219–13231

    Article  CAS  Google Scholar 

  12. Bickelhaupt FM (1999) J Comput Chem 20:114–128

    Article  CAS  Google Scholar 

  13. Fernández I, Bickelhaupt FM (2014) Chem Soc Rev 43:4953–4967

    Article  Google Scholar 

  14. Hammond GS (1955) J Am Chem Soc 77:334–338

    Article  CAS  Google Scholar 

  15. Hohenberg P, Kohn W (1964) Phys Rev B 136:864–871

    Article  Google Scholar 

  16. Domingo LR (2014) RSC Adv 4:32415–32428

    Article  CAS  Google Scholar 

  17. Ríos-Gutiérrez M, Domingo LR, Pérez P (2015) RSC Adv 5:84797–84809

    Article  Google Scholar 

  18. Domingo LR, Ríos-Gutiérrez M, Pérez P (2016) Tetrahedron 72:1524–1532

    Article  CAS  Google Scholar 

  19. Domingo LR, Chamorro E, Pérez P (2010) Lett Org Chem 7:432–439

    Article  CAS  Google Scholar 

  20. Sustmann R (1974) Pure Appl Chem 40:569–593

    Article  CAS  Google Scholar 

  21. Fukui K (1964) In: Löwdin PO, Pullman B (eds) Molecular orbitals in chemistry physics and biology. Academic Press, New York

    Google Scholar 

  22. Krokidis X, Noury S, Silvi B (1997) J Phys Chem A 101:7277–7282

    Article  CAS  Google Scholar 

  23. Huisgen R, Stangl H, Sturm HJ, Wagenhofer H (1962) Angew Chem 74:31

    Article  CAS  Google Scholar 

  24. Bunge K, Huisgen R, Raab R, Stangl H (1972) Chem Ber 105:1279–1295

    Article  CAS  Google Scholar 

  25. Sibi MP, Soeta T, Jasperse CP (2009) Org Lett 11:5366–5369

    Article  CAS  Google Scholar 

  26. Zhao Y, Truhlar DG (2004) J Phys Chem A 108:6908–6918

    Article  CAS  Google Scholar 

  27. Hehre WJ, Radom L, PvR Schleyer, Pople J (1986) Ab initio molecular orbital theory. Wiley, New York

    Google Scholar 

  28. Schlegel HB (1982) J Comput Chem 2:214–218

    Article  Google Scholar 

  29. Schlegel HB (1994) In: Yarkony DR (ed) Modern electronic structure theory. World Scientific Publishing, Singapore

    Google Scholar 

  30. Fukui K (1970) J Phys Chem 74:4161–4163

    Article  CAS  Google Scholar 

  31. González C, Schlegel HB (1990) J Phys Chem 94:5523–5527

    Article  Google Scholar 

  32. González C, Schlegel HB (1991) J Chem Phys 95:5853–5860

    Article  Google Scholar 

  33. Tomasi J (1994) Persico M 94:2027–2094

    CAS  Google Scholar 

  34. Simkin BY, Sheikhet I (1995) Quantum chemical and statistical theory of solutions—computational approach. Ellis Horwood, London

    Google Scholar 

  35. Cances E, Mennucci B, Tomasi J (1997) J Chem Phys 107:3032–3041

    Article  CAS  Google Scholar 

  36. Cossi M, Barone V, Cammi R, Tomasi J (1996) Chem Phys Lett 255:327–335

    Article  CAS  Google Scholar 

  37. Barone V, Cossi M, Tomasi J (1998) J Comput Chem 19:404–417

    Article  CAS  Google Scholar 

  38. Reed AE, Weinstock RB, Weinhold FJ (1985) J Chem Phys 83:735–746

    Article  CAS  Google Scholar 

  39. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899–926

    Article  CAS  Google Scholar 

  40. Parr RG, von Szentpaly L, Liu S (1999) J Am Chem Soc 121:1922–1924

    Article  CAS  Google Scholar 

  41. Parr RG, Pearson RG (1983) J Am Chem Soc 105:7512–7514

    Article  CAS  Google Scholar 

  42. Parr RG, Yang W (1989) Density functional theory of atoms and molecules. Oxford University Press, New York

    Google Scholar 

  43. Domingo LR, Chamorro E, Pérez P (2008) J Org Chem 73:4615–4624

    Article  CAS  Google Scholar 

  44. Domingo LR, Pérez P (2011) Org Biomol Chem 9:7168–7175

    Article  CAS  Google Scholar 

  45. Kohn W, Sham L (1965) J Phys Rev 140:1133–1138

    Article  Google Scholar 

  46. Domingo LR, Pérez P, Sáez JA (2013) RSC Adv 3:1486–1494

    Article  CAS  Google Scholar 

  47. Noury S, Krokidis K, Fuster F, Silvi B (1999) Comput Chem 23:597–604

    Article  CAS  Google Scholar 

  48. Frisch MJ et al (2009) Gaussian 09, Revision A.02. Gaussian Inc, Wallingford CT

    Google Scholar 

  49. Geerlings P, De Proft F, Langenaeker W (2003) Chem Rev 103:1793–1873

    Article  CAS  Google Scholar 

  50. Ess DH, Jones GO, Houk KN (2006) Adv Synth Catal 348:2337–2361

    Article  CAS  Google Scholar 

  51. Fernández-Herrera MA, Zavala-Oseguera C, Cabellos JL, Sandoval-Ramírez J, Domingo LR, Merino G (2014) J Mol Model 20:2207

    Article  Google Scholar 

  52. Domingo LR, Aurell MJ, Pérez P, Contreras R (2002) Tetrahedron 58:4417–4423

    Article  CAS  Google Scholar 

  53. Jaramillo P, Domingo LR, Chamorro E, Pérez P (2008) J Mol Struct (Theochem) 865:68–72

    Article  CAS  Google Scholar 

  54. Benchouk W, Mekelleche SM, Silvi B, Aurell MJ, Domingo LR (2011) J Phys Org Chem 24:611–618

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is in honour of the 60th birthday of Professor Alberto Vela. This work has been supported by the Ministry of Economy and Competitiveness of the Spanish Government, project CTQ2013-45646-P, Fondecyt (Chile) grants 1140341 (P.P.), 1140343 (E.C.) and 11130589 (M.D.-N), Millennium Nucleus Chemical Processes and Catalysis (CPC) project No. 120082 and the Universidad Andrés Bello (UNAB) for continuous support through research grants DI-793-15/R and DI-806-15/R. Prof L.R.D. also thanks FONDECYT for continuous support through Cooperación Internacional. M. R.-G. thanks the Ministry of Economy and Competitiveness for a pre-doctoral contract co-financed by the European Social Fund (BES-2014-068258).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Luis R. Domingo or Patricia Pérez.

Additional information

Published as part of the special collection of articles “Festschrift in honour of A. Vela”.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 636 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Domingo, L.R., Ríos-Gutiérrez, M., Duque-Noreña, M. et al. Understanding the carbenoid-type reactivity of nitrile ylides in [3+2] cycloaddition reactions towards electron-deficient ethylenes: a molecular electron density theory study. Theor Chem Acc 135, 160 (2016). https://doi.org/10.1007/s00214-016-1909-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-016-1909-6

Keywords

Navigation