Skip to main content
Log in

A contribution to a theory of mechanochemical pathways by means of Newton trajectories

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The reaction path is a central subject in theoretical chemistry. It is a pathway imagined on the potential energy surface (PES). It provides a one-dimensional description of a chemical reaction in an N-dimensional configuration space. Additionally, one can apply mechanical stress in a defined direction to the molecule and generate an effective PES. Changes for minima and saddle points by the stress are described by Newton trajectories on the original PES. The barrier of a reaction fully breaks down for the maximal value of the norm of the gradient of the PES along a pulling Newton trajectory. This point is named barrier breakdown point. We discuss topologically different, two-dimensional examples for this model to understand and classify the mechanochemistry of molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Rothman MJ, Lohr LL Jr (1980) Chem Phys Lett 70:405

    Article  CAS  Google Scholar 

  2. Williams IH, Maggiora GM (1982) J Mol Struct (Theochem) 89:365

    Article  Google Scholar 

  3. Quapp W, Hirsch M, Imig O, Heidrich D (1998) J Comput Chem 19:1087

    Article  CAS  Google Scholar 

  4. Quapp W, Hirsch M, Heidrich D (1998) Theor Chem Acc 100(5/6):285

    Article  CAS  Google Scholar 

  5. Anglada JM, Besalú E, Bofill JM, Crehuet R (2001) J Comput Chem 22:387

    Article  CAS  Google Scholar 

  6. Bofill JM, Anglada JM (2001) Theor Chem Acc 105:463

    Article  CAS  Google Scholar 

  7. Crehuet R, Bofill JM, Anglada JM (2002) Theor Chem Acc 107:130

    Article  CAS  Google Scholar 

  8. Quapp W (2003) J Theoret Comput Chem 2:385

    Article  CAS  Google Scholar 

  9. Quapp W (2004) J Mol Struct 695–696:95

    Article  Google Scholar 

  10. Bofill J, Quapp W (2011) J Chem Phys 134:074101

    Article  Google Scholar 

  11. Beyer MK, Clausen-Schaumann H (2005) Chem Rev 105:2921

    Article  CAS  Google Scholar 

  12. Caruso MM, Davis DA, Shen Q, Odom SA, Sottos NR, White SR, Moore JS (2009) Chem Rev 109:5755

    Article  CAS  Google Scholar 

  13. Lenhardt JM, Ong MT, Choe R, Evenhuis CR, Martinez TJ, Craig SL (2010) Science 329:1057

    Article  CAS  Google Scholar 

  14. Huang Z, Boulatov R (2011) Chem Soc Rev 40:2359

    Article  CAS  Google Scholar 

  15. Kucharski TJ, Boulatov R (2011) J Mater Chem 21:8237

    Article  CAS  Google Scholar 

  16. Ribas-Ariño J, Marx D (2012) Chem Rev 112:5412

    Article  Google Scholar 

  17. Baláž P, Achimovičová M, Baláž M, Billik P, Cherkezova-Zheleva Z et al (2013) Chem Soc Rev 42:7571

    Article  Google Scholar 

  18. Wang J, Kouznetsova TB, Niuand Z, Ong MT, Klukovich HM, Rheingold AL, Martinez TJ, Craig SL (2015) Nat Chem 7:323

    Article  CAS  Google Scholar 

  19. Makarov DE (2015) Single molecule science: physical principles and models. CRC Press, Taylor & Francis Group, Boca Raton

    Book  Google Scholar 

  20. Makarov DE (2016) J Chem Phys 144:030901

    Article  Google Scholar 

  21. Black AL, Lenhardt JM, Craig SL (2011) J Mater Chem 21:1655

    Article  CAS  Google Scholar 

  22. Avdoshenko SM, Makarov DE (2015) J Phys Chem B. doi:10.1021/acs.jpcb.5b07613

  23. Tian Y, Boulatov R (2013) Chem Commun 49:4187

    Article  CAS  Google Scholar 

  24. Bailey A, Mosey NJ (2012) J Chem Phys 136:044102

    Article  Google Scholar 

  25. Konda SSM, Brantley JM, Bielawski CW, Makarov DE (2011) J Chem Phys 135:164103

    Article  Google Scholar 

  26. Kliesch W (1998) A Mechanical string model of adiabatic chemical reactions, vol 69, Lecture Notes in Chemistry. Springer, Berlin

  27. Yew ZT, Schlierf M, Rief M, Paci E (2010) Phys Rev E 81:031923

    Article  Google Scholar 

  28. Heinrich V, Leung A, Evans E (2005) J Chem Inf Model 45:1482

    Article  CAS  Google Scholar 

  29. Best RB, Paci E, Hummer G, Dudko OK (2008) J Phys Chem B 112(19):5968

    Article  CAS  Google Scholar 

  30. Zhuravlev PI, Hinczewski M, Chakrabarti S, Marqusee S, Thirumalai D (2016) Proceedings of the national academy science. pp. E715–E724. doi:10.1073/pnas.1515730113

  31. Groote R, Jakobs RTM, Sijbesma RP (2013) Polymer Chem. 4:4864

    Article  Google Scholar 

  32. Suzuki Y, Dudko OK (2011) J Chem Phys 134(6):065102

    Article  Google Scholar 

  33. Freund LB (2009) PNAS 106:8818

    Article  CAS  Google Scholar 

  34. Branin FH (1972) IBM J Res Dev 16:504

    Article  Google Scholar 

  35. Quapp W, Bofill J (2016) J Phys Chem B 120:2644

    Article  CAS  Google Scholar 

  36. Quapp W (2004) J Math Chem 36:365

    Article  CAS  Google Scholar 

  37. Hirsch M, Quapp W, Molec J (2004) J Mol Struct Theochem 683(1–3):1

    Article  CAS  Google Scholar 

  38. Thom R (1989) Structural stability and morphogenesis: an outline of a general theory of models. Addison-Wesley, Reading, MA

    Google Scholar 

  39. Heidrich D, Kliesch W, Quapp W (1991) Properties of chemically interesting potential energy surfaces. Springer, Berlin Heidelberg

    Book  Google Scholar 

  40. Konda SSM, Avdoshenko SM, Makarov DE (2014) J Chem Phys 140:104114

    Article  Google Scholar 

  41. Bofill JM, Quapp W, Caballero M (2012) J Chem Theory Comput 8:927

    Article  CAS  Google Scholar 

  42. Wales DJ, Head-Gordon T (2012) J Phys Chem B 116:8394

    Article  CAS  Google Scholar 

  43. Evans E, Leung A, Volkmar H, Zhu C (2004) Proc Natl Acad Sci 101:11281

    Article  CAS  Google Scholar 

  44. Hirsch M, Quapp W (2004) J Math Chem 36:307

    Article  CAS  Google Scholar 

  45. Konda SSM, Brantley JM, Varghese BT, Wiggins KM, Bielawski CW, Makarov DE (2013) J Am Chem Soc 135:12722

    Article  CAS  Google Scholar 

  46. Blanco V, Leigh DA, Marcos V (2015) Chem Soc Rev 44:5341

    Article  CAS  Google Scholar 

  47. Valtazanos P, Ruedenberg K (1986) Theor Chim Acta 69:281

    Article  CAS  Google Scholar 

  48. Quapp W (1989) Theoret Chim Acta 75:447

    Article  CAS  Google Scholar 

  49. Seeman JI (1983) Chem Rev 83(2):83

    Article  CAS  Google Scholar 

  50. Barsegov V, Thirumalai D (2005) PNAS 102:1835

    Article  CAS  Google Scholar 

  51. Lenhardt JM, Black AL, Beiermann BA, Steinberg BD, Rahman F, Samborski T, Elsakr J, Moore JS, Sottos NR, Craig SL (2011) J Mater Chem 21:8454

    Article  CAS  Google Scholar 

  52. Neria E, Fischer S, Karplus M (1996) J Chem Phys 105:1902

    Article  CAS  Google Scholar 

  53. Hoffmann DK, Nord RS, Ruedenberg K (1986) Theor Chim Acta 69:265

    Article  Google Scholar 

  54. Schlegel HB (1992) Theor Chim Acta 83:15

    Article  CAS  Google Scholar 

  55. Fukui K (1970) J Phys Chem 74:4161

    Article  CAS  Google Scholar 

  56. Quapp W, Heidrich D (1984) Theor Chim Acta 66:245

    Article  CAS  Google Scholar 

  57. Crehuet R, Bofill JM (2005) J Chem Phys 122:234105

    Article  Google Scholar 

  58. Garai A, Zhang Y, Dudko OK (2014) J Chem Phys 140(13):135101

    Article  Google Scholar 

  59. Quapp W (2015) J Math Chem 54:137

    Article  Google Scholar 

  60. Hirsch M, Quapp W, Heidrich D (1999) Phys Chem Chem Phys 1:5291

    Article  CAS  Google Scholar 

  61. Quapp W, Melnikov V (2001) Phys Chem Chem Phys 3:2735

    Article  CAS  Google Scholar 

  62. Dallos M, Lischka H, Ventura do Monte E, Hirsch M, Quapp W (2002) J Comput Chem 23:576

    Article  CAS  Google Scholar 

  63. Quapp W, Heidrich D (2002) J Mol Struct Theochem 585:105

    Article  CAS  Google Scholar 

  64. Minyaev RM, Getmanskii IV, Quapp W (2004) Russ J Phys Chem 78:1494

    Google Scholar 

  65. Liu Y, Burger SK, Ayers PW (2011) J Math Chem 49(9):1915

    Article  CAS  Google Scholar 

  66. Quapp W, Bofill JM, Caballero M (2012) Chem Phys Lett 541:122

    Article  CAS  Google Scholar 

  67. Minyaev RM, Quapp W, Schmidt B, Getmanski IV, Koval VV (2013) Chem Phys 425:170

    Article  CAS  Google Scholar 

  68. Quapp W, Schmidt B (2011) Theor Chem Acc 128:47

    Article  CAS  Google Scholar 

  69. Schmidt B, Quapp W (2012) Theor Chem Acc 132:1305

    Article  Google Scholar 

  70. Quapp W (2007) J Comput Chem 28:1834

    Article  CAS  Google Scholar 

  71. Quapp W, Bofill J, Aguilar-Mogas A (2011) Theor Chem Acc 129:803

    Article  CAS  Google Scholar 

  72. Quapp W, Bofill JM (2015) Int J Quantum Chem 115:1635

    Article  CAS  Google Scholar 

  73. Thornton ER (1967) J Am Chem Soc 89:2915

    Article  CAS  Google Scholar 

  74. Avdoshenko SM, Makarov DE (2015) J Chem Phys 142:174106

    Article  Google Scholar 

  75. Ackermann S, Kliesch W (1998) Theor Chem Acc 99:255

    Article  CAS  Google Scholar 

  76. Bofill JM (2015) J Chem Phys 143:247101

    Article  Google Scholar 

  77. Mezey P (1987) Potential energy hypersurfaces. Elsevier, Amsterdam

    Google Scholar 

Download references

Acknowledgments

The authors thank Peter Pain and others from the Dmug list for hints to use Mathematica.10.3 for the profile figures. There was no financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Quapp.

Appendix

Appendix

We report the used formulas of the examples.

  1. Exam 1

    The surface is

    $$V(x,y)=4.5\,(1 - Exp[-x + 1])^2 + (1.75 y^2 - 0.1 y^4).$$
    (12)

    The minimum left below is at zero level, the last point on the x-axis is at level 4.34, where the SP on the y-axis is at level 7.65, and the maximum is at level 12. \(D_e=4.5\) is the final dissociation energy, \(x-1\) is the bond length displacement.

  2. Exam 2

    The surface is

    $$\begin{aligned} V(x,y)=10\,(1 - Exp[-x + 1])^2 + (1.75 y^2 - 0.1 y^4). \end{aligned}$$
    (13)

    The minimum left below is at zero level, and the SP on the x-axis is at level 9.64, where the SP on the y-axis is at a lower level of 7.65.

  3. Exam 3

    The surface is an uncoupled combination of a Morse- and a quartic/sixtic potential

    $$\begin{aligned} V(x,y)=10\,(1 - Exp[-y + 1])^2 + ( 0.1 x^2 + 0.75 x^4 - 0.125 x^6) . \end{aligned}$$
    (14)

    The minimum left below is at zero level, the SP on the x-axis is at level 4.4 U, where the SP on the y-axis is at level 9.64, and the maximum is at 14.04 .

  4. Exam 4

    Put \(h1=1,\ h2=-1.11,\ h3=3,\ h4=1,\ h5=0,\ h6=12.5\); see Ref. [8]. Form the symmetric matrices \(H1=((h1,h2)^T,(h2,h3)^T)\) and \(H2=((h4,h5)^T,(h5,h6)^T)\) and put

    $$V(x,y)=[(x-1,y-1)\, H1\, (x-1,y-1)^T ]\ [(x+1,y+1)\, H2\, (x+1,y+1)^T].$$
    (15)

    The minimums lie at zero level, the SP is at level 24, and the left VRI is 145 levels high, where the right VRI is at level 400.

  5. Exam 5

    The PES of Konda et al. [40] is

    $$V(x,y)= 0.5\,x^2-x^3/3+0.5\,(y^4/4+y^2\,(0.75-x)/2)+0.2\,x\,y^3/3.$$
    (16)
  6. Exam 6

    It is a PES with two bound states and two SPs, corresponding to Fig. 3b of Ref. [32]

    $$V(x,y)= (3.5 + y)\ (1 - Exp[-x + 1 + 0.2 y])^2 + (-3 y^2 + y^4 + y^3).$$
    (17)
  7. Exam 7

    The BQC surface [41] is given by

    $$\begin{aligned} V(x,y)= 1/3 (x^3 - 3 x y^2) - \pi (x - y) + 1/40 ((x + 7/4)^4 + y^4) . \end{aligned}$$
    (18)
  8. Exam 8

    The modified NFK-PES [44, 52] is

    $$V(x,y)= 0.03\,(x^2+y^2)^2+ x\,y-9\,Exp[-(x-3)^2-y^2]-9\,Exp[-(x+3)^2-y^2].$$
    (19)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quapp, W., Bofill, J.M. A contribution to a theory of mechanochemical pathways by means of Newton trajectories. Theor Chem Acc 135, 113 (2016). https://doi.org/10.1007/s00214-016-1880-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-016-1880-2

Keywords

Navigation