Skip to main content
Log in

Energy, structure and topological characterization of the isomers of the 1/2 diacetyl/water complex

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The diacetyl (DAC) molecule is both an atmospheric pollutant and a simple analogue of small biological molecules. A methodological approach based on topological tools is extended and applied to the search of stable isomers of the di-hydrated 1/2 DAC/H2O complex. Ten isomers corresponding to local minima on the potential energy surface were identified using the MP2/aug-cc-pVDZ level of theory. An energetic, geometric and topological characterization of these isomers was carried out. The approach of the supermolecule was applied to estimate interaction energies. Two families of isomers, characterized by cooperative and non-cooperative interactions, respectively, were identified. Among the ten isomers, only the three most stable ones present a cooperative effect. The interaction between a water dimer and the DAC molecule appears to be energetically much more favorable than two water molecules interacting solely with the DAC molecule. The interaction of the water dimer with the DAC molecule strongly affects the intermolecular interaction between the two water molecules, from a geometric and topologic point of view. Furthermore, in addition to hydrogen bondings, another type of electrostatic interaction is involved in the two most stable isomers: one of the water molecules is interacting with the DAC molecule through a “classical” hydrogen bonding, whereas the other one forms a π–hole-like interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Pauling L (1931) J Am Chem Soc 53:1367–1400

    Article  CAS  Google Scholar 

  2. Pauling L (1939) The nature of the chemical bond. Cornell University Press, Ithaca

    Google Scholar 

  3. Astbury WT, Street H (1931) Philos Trans R Soc 230:75–101

    Article  Google Scholar 

  4. Astbury WT, Woods HJ (1934) Philos Trans R Soc 232:333–394

    Article  Google Scholar 

  5. Sir Bragg WH (1922) Proc Phys Soc Lond 34:98–103

    Article  Google Scholar 

  6. Bernal JD, Fowler RH (1933) J Chem Phys 1:515–548

    Article  CAS  Google Scholar 

  7. Morgan J, Warren BE (1938) J Chem Phys 6:666–673

    Article  CAS  Google Scholar 

  8. Hibben JH (1936) J Chem Phys 5:166–172

    Article  Google Scholar 

  9. Walrafen GE (1972) Water: a comprehensive treatise. Plenum, New York

    Google Scholar 

  10. Pauling L (1935) J Am Chem Soc 57:2680–2684

    Article  CAS  Google Scholar 

  11. Huggins ML (1936) J Phys Chem 40:723–731

    Article  CAS  Google Scholar 

  12. Zewail AH (2006) Annu Rev Phys Chem 57:65–103

    Article  CAS  Google Scholar 

  13. Liu K, Brown MG, Carter C, Saykally RJ, Gregory JK, Clary DC (1996) Nature 381:501–503

    Article  CAS  Google Scholar 

  14. Liu K, Brown MG, Cruzan JD, Saykally RJ (1997) J Phys Chem A 101:8995–9010

    Article  CAS  Google Scholar 

  15. Keutsch FN, Saykally RJ (2001) PNAS 98:10533–10540

    Article  CAS  Google Scholar 

  16. Szalewicz K, Leforestier C, van der Avoird A (2009) Chem Phys Lett 482:1–14

    Article  CAS  Google Scholar 

  17. Shields RM, Temelso B, Archer KA, Morrell TE, Shields GC (2010) J Phys Chem A 114:11725–11737

    Article  CAS  Google Scholar 

  18. Pérez C, Neill JL, Muckle MT, Zaleski DP, Peña I, Lopez JC, Alonso JL, Pate BH (2015) Angew Chem Int Ed 54:979–982

    Article  Google Scholar 

  19. Vallejos MM, Peruchena NM (2012) J Phys Chem A 116:4199–4210

    Article  CAS  Google Scholar 

  20. Thomas J, Sukhorukov O, Jäger W, Xu Y (2014) Angew Chem Int Ed 53:1156–1159

    Article  CAS  Google Scholar 

  21. Gadre SR, Yeole SD, Sahu N (2014) Chem Rev 114:12132–12173

    Article  CAS  Google Scholar 

  22. Cirtog M, Alikhani ME, Madebene B, Soulard P, Asselin P, Tremblay B (2011) J Phys Chem A 115:6688–6701

    Article  CAS  Google Scholar 

  23. Esrafili MD, Mohammadian-Sabet F (2015) Struct Chem. doi:10.1007/s11224-015-0594-8

  24. Infantes L, Motherwell S (2002) Cryst. Eng. Comm. 4:454–461

    Article  CAS  Google Scholar 

  25. Grabowski SJ (2001) J Phys Chem A 105:10739–10746

    Article  CAS  Google Scholar 

  26. Rozas I (2007) Phys Chem Chem Phys 9:2782–2790

    Article  CAS  Google Scholar 

  27. Parthasarathi R, Subramania V (2006) Characterization of hydrogen bonding: from van der Waals interactions to covalency. In: Grabowski SJ (ed) Hydrogen bonding: new insights. Springer, The Netherlands

    Google Scholar 

  28. Clark T (2013) WIREs Comput Mol Sci 3:13–20

    Article  CAS  Google Scholar 

  29. Bader RF (1994) Atoms in molecules: a quantum theory. University Press, Oxford, Oxford

    Google Scholar 

  30. Bader RF (1998) J Phys Chem A 102:7314–7323

    Article  CAS  Google Scholar 

  31. Becke AD, Edgecombe KE (1990) J Chem Phys 92:5397–5403

    Article  CAS  Google Scholar 

  32. Silvi B, Savin A (1994) Nature 371:683–686

    Article  CAS  Google Scholar 

  33. Savin A, Silvi B, Colonna F (1996) Can J Chem 74:1088–1096

    Article  CAS  Google Scholar 

  34. Fuentealba P, Chamorro E, Santo JC (2006) Understanding and using the electron localization function. In: Toro-Labbé A (ed) Theoretical aspects of chemical reactivity. Elsevier, Amsterdam

    Google Scholar 

  35. Fuster F, Silvi B (2000) Theor Chem Acc 104:13–21

    Article  CAS  Google Scholar 

  36. Alikhani ME, Fuster F, Silvi B (2005) Struct Chem 16:203–210

    Article  CAS  Google Scholar 

  37. Silvi B (2003) J Phys Chem A 107:3081–3085

    Article  CAS  Google Scholar 

  38. Silvi B, Fourré I, Alikhani ME (2005) Monatsh Chem 136:855–879

    Article  CAS  Google Scholar 

  39. Fuster F, Grabowski SJ (2011) J Phys Chem A 115:10078–10086

    Article  CAS  Google Scholar 

  40. Dargent D, Zins EL, Madebene B, Alikhani ME (2015) J Mol Model. 21:214_1–214_13

    Article  Google Scholar 

  41. Grabowski SJ (2015) Chem Phys Chem 16:1470–1479

    CAS  Google Scholar 

  42. Grabowski SJ (2015) Molecules 20:11297–11316

    Article  CAS  Google Scholar 

  43. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision D.01

  44. Dunning TH Jr (1989) J Chem Phys 90:1007–1023

    Article  CAS  Google Scholar 

  45. Kendall RA, Dunning TH, Harrison RH (1992) J Chem Phys 96:6796–6808

    Article  CAS  Google Scholar 

  46. Keith TA (2014) AIMAll (version 14.10.27), TK Gristmill Software, Overland Park KS, USA (aim.tkgristmill.com)

  47. Mucha M, Mielke Z (2007) J Phys Chem A 111:2398–2406

    Article  CAS  Google Scholar 

  48. Favero LB, Caminati W (2009) J Phys Chem A 113:14308–14311

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. E. Alikhani.

Additional information

Published as part of the special collection of articles “CHITEL 2015 - Torino - Italy”.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3788 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dargent, D., Zins, E.L., Madebène, B. et al. Energy, structure and topological characterization of the isomers of the 1/2 diacetyl/water complex. Theor Chem Acc 135, 32 (2016). https://doi.org/10.1007/s00214-015-1793-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-015-1793-5

Keywords

Navigation