Skip to main content
Log in

A theoretical study on the anticancer drug Au(I) N-heterocyclic carbine complexes [(R2Im)2Au]+ (R = Me, Et, i-Pr, and n-Pr) binding to cysteine and selenocysteine residues

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The reaction mechanism of cationic Au(I) N-heterocyclic carbine (NHC) complexes [(R2Im)2Au]+ (R = Me, Et, i-Pr, and n-Pr) binding to Cys and Sec residues for the monofunctional and bifunctional substitution reaction was studied using the density functional theory with the B3LYP functional. The optimized geometries reveal the transition state configuration of Au(I) complex exhibited trigonal planar configuration. Over-investigation of the activation energies of all the complexes demonstrated that Me group complexes were more favorable in monofunctional substitution reaction, while the bifunctional substitution reaction preferred i-Pr group complexes. In addition, the reaction of Au(I) complexes binding to the active site Sec selenol was stronger than to the active site Cys thiols. Moreover, to consider the environment effect, we employed the isoelectric focusing polarizable continuum model to calculate the single-point energy in dependence of the dielectric constant ɛ, observing the environment was a weeny impact on the binding of Au(I) NHC complexes to its intracellular targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Scheme 3
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Lima JC, Rodriguez L (2011) Anti-Cancer Agents Med Chem 11:921

    Article  CAS  Google Scholar 

  2. Zhou LX (2009) J Phys Chem B 113:2110

    Article  CAS  Google Scholar 

  3. Jakupec MA, Galanski M, Keppler BK (2003) Rev Physiol Biochem Pharmacol 146:1

    Article  CAS  Google Scholar 

  4. Fuertes MA, Alonso C, Perez JM (2003) Chem Rev 103:645

    Article  CAS  Google Scholar 

  5. Perez RP (1998) Eur J Cancer 34:1535

    Article  CAS  Google Scholar 

  6. Alberto ME, Lucas MF, Pavelka M, Russo N (2008) J Phys Chem B 112:10765

    Article  CAS  Google Scholar 

  7. Bruijnincx PCA, Sadler PJ (2008) Curr Opin Chem Biol 12:197

    Article  CAS  Google Scholar 

  8. Ronconi L, Sadler PJ (2007) Coord Chem Rev 251:1633

    Article  CAS  Google Scholar 

  9. Ott I, Gust R (2007) Arch Pharm Chem Life Sci 340:117

    Article  CAS  Google Scholar 

  10. Meggers E (2007) Curr Opin Chem Biol 11:287

    Article  CAS  Google Scholar 

  11. Zhao HL, Zhou LX (2012) Comput Theor Chem 979:22

    Article  CAS  Google Scholar 

  12. Rubbiani R, Kitanovic I, Alborzinia H, Can S, Kitanovic A, Onambele LA, Stefanopoulou M, Geldmacher Y, Sheldrick WS, Wolber G, Prokop A, Wölfl S, Ott I (2010) J Med Chem 53:8608

    Article  CAS  Google Scholar 

  13. Anestal K, Arner ES (2003) J Biol Chem 278:15966

    Article  CAS  Google Scholar 

  14. Marzano C, Gandin V, Folda A, Scutari G, Bindoli A, Rigobello MA (2007) Free Radic Biol Med 42:872

    Article  CAS  Google Scholar 

  15. Liao JZ, Zhao HL, Zhou LX (2014) Comput Theor Chem 1048:84

    Article  CAS  Google Scholar 

  16. Berners-Price SJ, Filipovska A (2011) Metallomics 3:86

    Article  Google Scholar 

  17. Sharma RP, Smillie J, Palmer DG (1985) Pharmacology 30:115

    Article  CAS  Google Scholar 

  18. Fernández GA, Vela-Gurovic MS, Olivera NL, Chopa AB, Silbestri GF (2014) J Inorg Biochem 135:54

    Article  Google Scholar 

  19. Alex J, Ghosh P (2010) Dalton Trans 39:7183

    Article  Google Scholar 

  20. Arduengo AJ, Harlow RL, Kline M (1991) J Am Chem Soc 113:361

    Article  CAS  Google Scholar 

  21. Baker MV, Barnard PJ, Berners-Price SJ (2006) Dalton Trans 30:3708

    Article  Google Scholar 

  22. Gautier A, Cisnetti F (2012) Metallomics 4:23

    Article  CAS  Google Scholar 

  23. Oehninger L, Rubbiani R, Ott I (2013) Dalton Trans 42:3269

    Article  CAS  Google Scholar 

  24. Hickey JL, Ruhayel RA, Barnard PJ (2008) J Am Chem Soc 130:12570

    Article  CAS  Google Scholar 

  25. Liu Wk, Gust R (2013) Chem Soc Rev 42:755

    Article  CAS  Google Scholar 

  26. Green DR (2004) Sci 305:626

    Article  CAS  Google Scholar 

  27. Galluzzi L, Larochette N, Zamzami N, Kroemer G (2006) Oncogene 25:4812

    Article  CAS  Google Scholar 

  28. Fantin VR, Leder P (2006) Oncogene 25:4787

    Article  CAS  Google Scholar 

  29. Lincoln DT, Ali Emadi EM, Tonissen KF, Clarke FM (2003) Anticancer Res 23:2425

    CAS  Google Scholar 

  30. Rundolf AK, Arner ES (2004) Antioxid Redox Signal 6:41

    Article  Google Scholar 

  31. Ott I (2009) Coord Chem Rev 253:1670

    Article  CAS  Google Scholar 

  32. Nobili S, Mini E, Landini I, Gabbiani C, Casini A, Messori L (2010) Med Res Rev 30:550

    CAS  Google Scholar 

  33. Bernardi P (1999) Physiol Rev 79:1127

    CAS  Google Scholar 

  34. Debatin KM, Poncet D, Kroemer G (2002) Oncogene 21:8786

    Article  CAS  Google Scholar 

  35. Makin G, Dive C (2003) Trends Mol Med 9:251

    Article  CAS  Google Scholar 

  36. Dias N, Bailly C (2005) Biochem Pharmacol 70:1

    Article  CAS  Google Scholar 

  37. Urig S, Fritz-Wolf K, Reau R (2006) Angew Chem Int Ed 45:1881

    Article  CAS  Google Scholar 

  38. Frisch MJ et al (2010) Gaussian 09 (Revision C.01). Gaussian, Inc., Wallingford

    Google Scholar 

  39. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  40. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  41. Wadt WR, Hay PJ (1985) J Chem Phys 82:284

    Article  CAS  Google Scholar 

  42. Hay PJ, Wadt WR (1985) J Chem Phys 82:270

    Article  CAS  Google Scholar 

  43. Hay PJ, Wadt WR (1985) J Chem Phys 82:299

    Article  CAS  Google Scholar 

  44. Gonzalez C, Schlegel HB (1990) J Phys Chem 94:5523

    Article  CAS  Google Scholar 

  45. Gonzalez C, Schlegel HB (1989) J Chem Phys 90:2154

    Article  CAS  Google Scholar 

  46. Mennucci B, Tomasi J (1997) J Chem Phys 106:5151

    Article  CAS  Google Scholar 

  47. Mennucci B, Cances E (1997) J Phys Chem B 101:10506

    Article  CAS  Google Scholar 

  48. Tomasi J, Mennucci B, Cances E (1999) J Mol Struct (THEOCHEM) 464:211

    Article  CAS  Google Scholar 

  49. Deubel DV (2004) J Am Chem Soc 126:5999

    Article  CAS  Google Scholar 

  50. Archontis G, Simonson T (2001) J Am Chem Soc 123:11047

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 21271088).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lixin Zhou.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 254 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, X., Zhou, L. A theoretical study on the anticancer drug Au(I) N-heterocyclic carbine complexes [(R2Im)2Au]+ (R = Me, Et, i-Pr, and n-Pr) binding to cysteine and selenocysteine residues. Theor Chem Acc 135, 30 (2016). https://doi.org/10.1007/s00214-015-1776-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-015-1776-6

Keywords

Navigation