Skip to main content
Log in

Designing a paradigm for parameter-free double-hybrid density functionals through the adiabatic connection path

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

It is now well established that the double-hybrid (DH) approximations belong to the most accurate methodologies for various properties and electronic structure calculations in the framework of density functional theory (DFT). In this context, we are lately witnessing the blooming of capable DH functionals derived from the adiabatic connection (AC) formalism. In the present work, through the AC path and by using a cubic integrand (CI) function, a novel DH exchange–correlation model is derived. The mixing coefficients are determined based on several well-known limiting conditions and linearly scaled one-parameter DH approximation. Employing the Perdew–Burke–Ernzerhof (PBE) and Tao–Perdew–Staroverov–Scuseria (TPSS) semilocal functionals as exchange and correlation terms in the underlying expression, the two new functionals free of any empirical parameter, CIDH–PBE and CIDH–TPSS, are developed. Using some benchmark sets on a number of different molecular properties including atomization energies, equilibrium geometries, vibrational frequencies, frontier orbital energies, and dipole polarizabilities, the performance of the CIDH models is compared with recently proposed parameterized, parameter-free, and AC-based DHs. Our numerical results show that the CIDH–PBE functional performs slightly better on average than CIDH–TPSS. Moreover, owing to its significant improvement over its parent functional and Møller–Plesset perturbation calculations, and similar or comparable performance compared to other DHs in some cases, CIDH–PBE can be considered as another promising functional for DH computations. On the whole, as evidenced from this study and other recent efforts in this respect, the development of parameter-free DHs from the route of AC has opened a new outlook in the field of DH–DFT, and more investigations in this direction are desirable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Hohenberg P, Kohn W (1964) Phys Rev 136:B864

    Article  Google Scholar 

  2. Kohn W, Sham LJ (1965) Phys Rev 140:A1133

    Article  Google Scholar 

  3. Parr RG, Yang W (1989) Density functional theory of atoms and molecules. Oxford University Press, Oxford

    Google Scholar 

  4. Zhao Y, Lynch BJ, Truhlar DG (2004) J Phys Chem A 108:4786

    Article  CAS  Google Scholar 

  5. Zhao Y, Lynch BJ, Truhlar DG (2005) Phys Chem Chem Phys 7:43

    Article  CAS  Google Scholar 

  6. Grimme S (2006) J Chem Phys 124:034108

    Article  Google Scholar 

  7. Schwabe T, Grimme S (2006) Phys Chem Chem Phys 8:4398

    Article  CAS  Google Scholar 

  8. Tarnopolsky A, Karton A, Sertchook R, Vuzman D, Martin JML (2008) J Phys Chem A 112:3

    Article  CAS  Google Scholar 

  9. Karton A, Tarnopolsky A, Lamère J-F, Schatz GC, Martin JML (2008) J Phys Chem A 112:12868

    Article  CAS  Google Scholar 

  10. Benighaus T, DiStasio RA, Lochan RC, Chai J-D, Head-Gordon M (2008) J Phys Chem A 112:2702

    Article  CAS  Google Scholar 

  11. Sancho-García JC, Pérez-Jiménez A (2009) J Chem Phys 131:084108

    Article  Google Scholar 

  12. Graham DC, Menon AS, Goerigk L, Grimme S, Radom L (2009) J Phys Chem A 113:9861

    Article  CAS  Google Scholar 

  13. Zhang Y, Xu X, Goddard WA III (2009) Proc Natl Acad Sci USA 106:4963

    Article  CAS  Google Scholar 

  14. Kozuch S, Gruzman D, Martin JML (2010) J Phys Chem C 114:20801

    Article  CAS  Google Scholar 

  15. Zhang Y, Xu X, Goddard WA III (2011) Proc Natl Acad Sci USA 108:19896

    Article  CAS  Google Scholar 

  16. Goerigk L, Grimme S (2011) J Chem Theory Comput 7:291

    Article  CAS  Google Scholar 

  17. Sharkas K, Toulouse J, Savin A (2011) J Chem Phys 134:064113

    Article  Google Scholar 

  18. Brémond E, Adamo C (2011) J Chem Phys 135:024106

    Article  Google Scholar 

  19. Toulouse J, Sharkas K, Brémond E, Adamo C (2011) J Chem Phys 135:101102

    Article  Google Scholar 

  20. Fromager E (2011) J Chem Phys 135:244106

    Article  Google Scholar 

  21. Zhang IY, Xu X (2011) Int Rev Phys Chem 30:115

    Article  Google Scholar 

  22. Kozuch S, Martin JML (2011) Phys Chem Chem Phys 13:20104

    Article  CAS  Google Scholar 

  23. Zhang IY, Su NQ, Brémond E, Adamo C, Xu X (2012) J Chem Phys 136:174103

    Article  Google Scholar 

  24. Chai J-D, Mao S-P (2012) Chem Phys Lett 538:121

    Article  CAS  Google Scholar 

  25. Mohajeri A, Alipour M (2012) J Chem Phys 136:124111

    Article  Google Scholar 

  26. Peverati R, Head-Gordon M (2013) J Chem Phys 139:024110

    Article  Google Scholar 

  27. Zhang IY, Xu X (2013) J Phys Chem Lett 4:1669

    Article  CAS  Google Scholar 

  28. Sancho-García JC, Adamo C (2013) Phys Chem Chem Phys 15:14581

    Article  Google Scholar 

  29. Bousquet D, Brémond E, Sancho-García JC, Ciofini I, Adamo C (2013) J Chem Theory Comput 9:3444

    Article  CAS  Google Scholar 

  30. Kozuch S, Martin JML (2013) J Comput Chem 34:2327

    CAS  Google Scholar 

  31. Meo FD, Trouillas P, Adamo C, Sancho-García JC (2013) J Chem Phys 139:164104

    Article  Google Scholar 

  32. Su NQ, Adamo C, Xu X (2013) J Chem Phys 139:174106

    Article  Google Scholar 

  33. Cornaton Y, Franck O, Teale AM, Fromager E (2013) Mol Phys 111:1275

    Article  CAS  Google Scholar 

  34. Aragó J, Ortí E, Sancho-García JC (2013) J Chem Theory Comput 9:3437

    Article  Google Scholar 

  35. Alipour M (2013) J Phys Chem A 117:2884

    Article  CAS  Google Scholar 

  36. Alipour M (2013) J Phys Chem A 117:4506

    Article  CAS  Google Scholar 

  37. Su NQ, Yang W, Sánchez PM, Xu X (2014) J Phys Chem A 118:9201

    Article  CAS  Google Scholar 

  38. Su NQ, Xu X (2014) J Chem Phys 140:18A512

    Article  Google Scholar 

  39. Souvi SMO, Sharkas K, Toulouse J (2014) J Chem Phys 140:084107

    Article  Google Scholar 

  40. Chan B, Radom L (2014) Theor Chem Acc 133:1426

    Article  Google Scholar 

  41. Sharkas K, Toulouse J, Maschio L, Civalleri B (2014) J Chem Phys 141:044105

    Article  Google Scholar 

  42. Cornaton Y, Fromager E (2014) Int J Quantum Chem 114:1199

    Article  CAS  Google Scholar 

  43. Yu F (2014) J Chem Theory Comput 10:4400

    Article  CAS  Google Scholar 

  44. Alipour M (2014) J Phys Chem A 118:5333

    Article  CAS  Google Scholar 

  45. Goerigk L, Grimme S (2014) WIREs Comput Mol Sci 4:576

    Article  CAS  Google Scholar 

  46. Brémond E, Sancho-García JC, Pérez-Jiménez AJ, Adamo C (2014) J Chem Phys 141:031101

    Article  Google Scholar 

  47. Kim J, Jung Y (2015) J Chem Theory Comput 11:45

    Article  CAS  Google Scholar 

  48. Bousquet D, Brémond E, Sancho-García JC, Ciofini I, Adamo C (2015) Theor Chem Acc 134:1602

    Article  Google Scholar 

  49. Harris J (1984) Phys Rev A 29:1648

    Article  CAS  Google Scholar 

  50. Cohen AJ, Mori-Sánchez P, Yang W (2007) J Chem Phys 127:034101

    Article  Google Scholar 

  51. Görling A, Levy M (1993) Phys Rev B 47:13105

    Article  Google Scholar 

  52. Görling A, Levy M (1994) Phys Rev A 50:196

    Article  Google Scholar 

  53. Yang W (1987) In: Erdahl R, Smith Jr VH (eds) Density matrices and density-functionals. Reidel, Holland

    Google Scholar 

  54. Levy M, Perdew JP (1987) In: March NH, Deb BM (eds) Single-particle density in physics and chemistry. Academic, London

    Chapter  Google Scholar 

  55. Levy M, Perdew JP (1985) Phys Rev A 32:2010

    Article  CAS  Google Scholar 

  56. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865

    Article  CAS  Google Scholar 

  57. Tao J, Perdew JP, Staroverov VN, Scuseria GE (2003) Phys Rev Lett 91:146401

    Article  Google Scholar 

  58. Lynch BJ, Truhlar DG (2003) J Phys Chem A 107:8996

    Article  CAS  Google Scholar 

  59. Huber KP, Herzberg G (1979) Constants of diatomic molecules, molecular spectra and molecular structure. Van Nostrand, Princeton

    Book  Google Scholar 

  60. Helgaker T, Gauss J, Jørgensen P, Olsen J (1997) J Chem Phys 106:6430

    Article  CAS  Google Scholar 

  61. Gerenkamp M, Grimme S (2004) Chem Phys Lett 392:229

    Article  CAS  Google Scholar 

  62. Neese F, Schwabe T, Grimme S (2007) J Chem Phys 126:124115

    Article  Google Scholar 

  63. Lin Y-S, Tsai C-W, Li G-D, Chai J-D (2012) J Chem Phys 136:154109

    Article  Google Scholar 

  64. Hohm U (2013) J Mol Struct 1054:282

    Article  Google Scholar 

  65. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09 revision A.02. Gaussian Inc, Wallingford

    Google Scholar 

  66. Perdew JP, Schmidt K (2001) AIP Conf Proc 577:1

    Article  CAS  Google Scholar 

  67. Adamo C, Barone V (1997) Chem Phys Lett 274:242

    Article  CAS  Google Scholar 

  68. Guido CA, Brémond E, Adamo C, Cortona P (2013) J Chem Phys 138:021104

    Article  Google Scholar 

  69. Zhao Y, Truhlar DG (2005) J Phys Chem A 109:5656

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Computing facilities from Shiraz University are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mojtaba Alipour.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alipour, M. Designing a paradigm for parameter-free double-hybrid density functionals through the adiabatic connection path. Theor Chem Acc 134, 87 (2015). https://doi.org/10.1007/s00214-015-1689-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-015-1689-4

Keywords

Navigation