Skip to main content
Log in

Reactivity of transition metal atoms supported or not on TiO2(110) toward CO and H adsorption

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Following our strategy to analyze the metal–support interaction, we present periodic DFT calculations for adsorption of metal atoms on a perfect rutile TiO2(110) surface (at low coverage, θ = 1/3) to investigate the interaction of an individual metal atom, M, with TiO2 and its consequence on the coadsorption of H and CO over M/TiO2. M under investigation varies in a systematic way from K to Zn. It is found that the presence of the support decreases or increases the strength of M–H or M–CO interaction according to the nature of M. The site of the adsorption for H and the formation of HCO/M also depend on M. From the left- to the right-hand side of the period, C and O both interact while O progressively detaches from M. On the contrary, for M = Fe–Cu, CO dissociation is more likely to happen. For CO and H coadsorption, two extreme cases emerge: For Ni, the hydrogen adsorbed should easily move on the support and CO dissociation is more likely. For Ti or Sc, H is easily coadsorbed with CO on the metal and CO hydrogenation could be the initial step.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Note that a “minimalistic or reductionist approach,” reducing the number of variables, is not only a tool for theoretical analysis; according to Somorjai, it allows designing the right experiment (An American scientist, 2013 Archway publishing Bloomington).

  2. Note that the formal electron transfer referring to oxidation states may be hardly visible through charge analysis [14]. The site of adsorption (on O dianion) confirms the cationic feature. In cases of unpaired electrons, the reduction is often better revealed by spin analysis [1, 30]. Gold on reduced surfaces (O defective, hydrogenated surface) is the exception [1, 30].

  3. We never see Cu2+.

References

  1. Helali Z, Markovits A, Minot C, Abderrabba M (2013) Chem Phys Lett 565:45

    Article  CAS  Google Scholar 

  2. Khodakov AY, Chu W, Fongarland P (2007) Chem Rev 107(5):1692

    Article  CAS  Google Scholar 

  3. Ciobica IM, van Santen RA (2003) J Phys Chem B 107(16):3808

    Article  CAS  Google Scholar 

  4. Sellers H, Gislason J (1999) Surf Sci 426(2):147

    Article  CAS  Google Scholar 

  5. Souza Monteiro R, Paes LW, Carneiro JWDM, Aranda DA (2008) J Cluster Sci 19(4):601

    Article  Google Scholar 

  6. Jedidi A, Markovits A, Minot C, Abderrabba M, Van Hove MA (2014) PCCP 16:20703

    Article  CAS  Google Scholar 

  7. Jedidi A, Norelus W, Markovits A, Minot C, Illas F, Abderrabba M (2013) Theor Chem Acc 133(2):1

    Google Scholar 

  8. Markvoort AJ, van Santen RA, Hilbers PAJ, Hensen EJM (2012) Angew Chem Int Ed 51(36):9015

    Article  CAS  Google Scholar 

  9. van Santen RA, Markvoort AJ, Filot IAW, Ghouri MM, Hensen EJM (2013) PCCP 15(40):17038

    Article  Google Scholar 

  10. Elahifard MR, Jigato MP, Niemantsverdriet JW (2012) ChemPhysChem 13(1):89

    Article  CAS  Google Scholar 

  11. Bond GC (1983) Spec Period Report 6:27

    CAS  Google Scholar 

  12. Tauster SJ, Fung SC, Garten RL (1978) J Am Chem Soc 100(1):170

    Article  CAS  Google Scholar 

  13. Calzado CJ, San Miguel MA, Sanz JF (1999) J Phys Chem B 103(3):480

    Article  CAS  Google Scholar 

  14. Giordano L, Pacchioni G, Bredow T, Sanz JF (2001) Surf Sci 471(1–3):21

    Article  CAS  Google Scholar 

  15. Gomes JRB, Illas F, Hernández NC, Márquez A, Sanz JF (2002) Phys Rev B 65(12):125414

    Article  Google Scholar 

  16. Grau-Crespo R, Hernandez NC, Sanz JF, de Leeuw NH (2007) J Phys Chem C 111(28):10448

    Article  CAS  Google Scholar 

  17. Helali Z, Markovits A, Minot C, Abderrabba M (2012) Struct Chem 23(5):1309

    Article  CAS  Google Scholar 

  18. Hernández NC, Graciani J, Márquez A, Sanz JF (2005) Surf Sci 575(1–2):189

    Article  Google Scholar 

  19. Hernández NC, Sanz JF (2002) J Phys Chem B 106(44):11495

    Article  Google Scholar 

  20. San Miguel MA, Calzado CJ, Sanz JF (2001) J Phys Chem B 105(9):1794

    Article  CAS  Google Scholar 

  21. Wörz AS, Heiz U, Cinquini F, Pacchioni G (2005) J Phys Chem B 109(39):18418

    Article  Google Scholar 

  22. Márquez A, Graciani J, Sanz J (2010) Theor Chem Acc 126(3–4):265

    Article  Google Scholar 

  23. Fan L, Fujimoto K (1994) J Catal 150(1):217

    Article  CAS  Google Scholar 

  24. Bracey JD, Burch R (1984) J Catal 86(2):384

    Article  CAS  Google Scholar 

  25. Haller G, Resasco DE (1989) Adv Catal 36:173

    CAS  Google Scholar 

  26. Tsubaki N, Fujimoto K (2003) Top Catal 22(3):325

    Article  CAS  Google Scholar 

  27. Fernandez S, Alikhani E, Markovits A, Skalli MK, Minot C (2009) Chem Phys Lett 475(4–6):215

    Article  CAS  Google Scholar 

  28. Fernandez S, Markovits A, Fuster F, Minot C (2007) J Phys Chem C 111(18):6781

    Article  CAS  Google Scholar 

  29. Sanz JF, Márquez A (2007) J Phys Chem C 111(10):3949

    Article  CAS  Google Scholar 

  30. Fernandez SB, Markovits A, Minot C (2008) J Phys Chem C 112(36):14010

    Article  CAS  Google Scholar 

  31. Kresse G, Hafner J (1994) Phys Rev B 49(20):14251

    Article  CAS  Google Scholar 

  32. Kresse G, Furthmüller J (1996) Comput Mater Sci 6:15

    Article  CAS  Google Scholar 

  33. Kresse G, Furthmüller J (1996) J Phys Rev B 54:11169

    Article  CAS  Google Scholar 

  34. Kresse G, Hafner J (1993) Phys Rev B 48:13115

    Article  CAS  Google Scholar 

  35. Blochl PE (1994) Phys Rev B 50(24):17953

    Article  Google Scholar 

  36. Kresse G, Joubert D (1999) Phys Rev B 59(3):1758

    Article  CAS  Google Scholar 

  37. Bredow T, Giordano L, Cinquini F, Pacchioni G (2004) Phys Rev B 70(3):035419

    Article  Google Scholar 

  38. Hameeuw KJ, Cantele G, Ninno D, Trani F, Iadonisi G (2006) J Chem Phys 124(2):024708

    Article  CAS  Google Scholar 

  39. Pilme J, Silvi B, Alikhani ME (2003) J Phys Chem A 107(22):4506

    Article  CAS  Google Scholar 

  40. Chatt J, Duncanson LA (1953) J Chem Soc 2939

  41. Dewar MJS (1951) Bull Soc Chim Fr 18(3–4):C71

    Google Scholar 

  42. Nguyen_Trong A (2007) Frontier orbitals: a practical manual

  43. Nguyen_Trong A, Eisenstein O (1977) New J Chem 1(1):61

  44. Moruzzi VL, Williams AR, Janak JF (1977) Phys Rev B 15(6):2854

    Article  CAS  Google Scholar 

  45. Ayed O, Manceron L, Silvi B (1988) J Phys Chem 92(1):37

    Article  CAS  Google Scholar 

  46. Leconte J, Markovits A, Skalli MK, Minot C, Belmajdoub A (2002) Surf Sci 497(1–3):194

    Article  CAS  Google Scholar 

  47. Shustorovich E (1986) Surf Sci Rep 6(1):1

    Article  CAS  Google Scholar 

  48. Shustorovich E (1990) The bond-order conservation approach to chemisorption and heterogeneous catalysis: applications and implications. In: Eley DD, Pines H, Weisz PB (eds) Advances in catalysis, vol 37. Academic Press, p 101. http://dx.doi.org/10.1016/S0360-0564(08)60364-8

  49. Kaupp M, Stoll H, Preuss H (1990) J Comput Chem 11:1029

    Article  CAS  Google Scholar 

  50. Adamo C, Barone V (1999) J Chem Phys 110(13):6158

    Article  CAS  Google Scholar 

  51. Koukounas C, Kardahakis S, Mavridis A (2005) J Chem Phys 123(7):074327

    Article  Google Scholar 

  52. Alikhani ME, Manceron L (2015) J Mol Spectrosc (in press)

Download references

Acknowledgments

We are grateful to CMCU-PHC (09G 1212) and the Institut Français de Cooperation in Tunisia (IFC) for their financial support. The authors thank GENCI and CCRE for computing facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexis Markovits.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Helali, Z., Jedidi, A., Markovits, A. et al. Reactivity of transition metal atoms supported or not on TiO2(110) toward CO and H adsorption. Theor Chem Acc 134, 50 (2015). https://doi.org/10.1007/s00214-015-1652-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-015-1652-4

Keywords

Navigation