Skip to main content
Log in

NO adsorption and transformation on the BaO surfaces from density functional theory calculations

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Density functional theory combined with embedded cluster model calculations have been used to investigate the NO adsorption and transformation reactions on the BaO(100) surfaces. NO is found to adsorb on the anion sites to form a NO2 2− species, which can then couple with another NO to form a N2O3 2− species. These surface species provide an alternative explanation for the infrared bands that were used to be assigned to the nitrite/nitrate and hyponitrite species. The calculations suggest a large intrinsic barrier for the transformation from N2O3 2− to N2O2 2−. The latter species acts as a chemisorbed N2O, which is envisioned as a key intermediate for further NO reduction. The present study provides a detailed description at the molecular level for the NO/BaO(100) system, which shed some light on the NOx storage–reduction systems, as well as NO direct decomposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Epling WS, Campbell LE, Yezerets A, Currier NW, Parks JE II (2004) Overview of the fundamental reactions and degradation mechanisms of NOx storage/reduction catalysts. Catal Rev Sci Eng 46:163–245

    Article  Google Scholar 

  2. Liu ZM, Woo SI (2006) Recent advances in catalytic DeNOx science and technology. Catal Rev Sci Eng 48:43–89

    Article  CAS  Google Scholar 

  3. Roy S, Baiker A (2009) NOx storage–reduction catalysis: from mechanism and materials properties to storage–reduction performance. Chem Rev 109:4054–4091

    Article  CAS  Google Scholar 

  4. Granger P, Parvulescu VI (2011) Catalytic NOx abatement systems for mobile sources: from three-way to lean burn after-treatment technologies. Chem Rev 111:3155–3207

    Article  CAS  Google Scholar 

  5. Szanyi J, Yi CW, Mudiyanselage K, Kwak JH (2013) Understanding automotive exhaust catalysts using a surface science approach: model NOx storage materials. Top Catal 56:1420–1440

    Article  CAS  Google Scholar 

  6. Takahashi N, Shinjoh H, Iijima T, Suzuki T, Yamazaki K, Yokota K, Suzuki H, Miyoshi N, Matsumoto S, Tanizawa T, Tanaka T, Tateishi S, Kasahara K (1996) The new concept 3-way catalyst for automotive lean-burn engine: NOx storage and reduction catalyst. Catal Today 27:63–69

    Article  CAS  Google Scholar 

  7. Matsumoto S (1996) DeNOx catalyst for automotive lean-burn engine. Catal Today 29:43–45

    Article  CAS  Google Scholar 

  8. Bögner W, Krämer M, Krutzsch B, Pischinger S, Voigtländer D, Wenninger G, Wirbeleit F, Brogan MS, Brisley J, Webster DE (1995) Removal of nitrogen oxides from the exhaust of a lean-tune gasoline engine. Appl Catal B Environ 7:153–171

    Article  Google Scholar 

  9. Lietti L, Forzatti P, Nova I, Tronconi E (2001) NOx storage reduction over Pt-Ba/γ–Al2O3 catalyst. J Catal 204:175–191

    Article  CAS  Google Scholar 

  10. Fridell E, Skoglundh M, Westerberg B, Johansson S, Smedler G (1999) NOx storage in barium-containing catalysts. J Catal 183:196–209

    Article  CAS  Google Scholar 

  11. Muncrief RL, Khanna P, Kabin KS, Harold MP (2004) Mechanistic and kinetic studies of NOx storage and reduction on Pt/BaO/Al2O3. Catal Today 98:393–402

    Article  CAS  Google Scholar 

  12. Schmitz PJ, Baird RJ (2002) NO and NO2 adsorption on barium oxide: model study of the trapping stage of NOx conversion via lean NOx traps. J Phys Chem B 106:4172–4180

    Article  CAS  Google Scholar 

  13. Prinetto F, Ghiotti G, Nova I, Lietti L, Tronconi E, Forzatti P (2001) FT-IR and TPD investigation of the NOx storage properties of BaO/Al2O3 and Pt-BaO/Al2O3 catalysts. J Phys Chem B 105:12732–12745

    Article  CAS  Google Scholar 

  14. Fridell E, Persson H, Olsson L, Westerberg B, Amberntsson A, Skoglundh M (2001) Model studies of NOx storage and sulphur deactivation of NOx storage catalyst. Top Catal 16(17):133–137

    Article  Google Scholar 

  15. Sedlmair C, Seshan K, Jentys A, Lercher JA (2003) Elementary steps of NOx adsorption and surface reaction on a commercial storage–reduction catalyst. J Catal 214:308–316

    Article  CAS  Google Scholar 

  16. Fridell E, Persson H, Westerberg B, Olsson L, Skoglundh M (2000) The mechanism for NOx storage. Catal Lett 66:71–74

    Article  CAS  Google Scholar 

  17. Westerberg B, Fridell E (2001) A transient FTIR study of species formed during NOx storage in the Pt/BaO/Al2O3 system. J Mol Catal A Chem 165:249–263

    Article  CAS  Google Scholar 

  18. Olsson L, Persson H, Fridell E, Skoglundh M, Andersson B (2001) A kinetic study of NO oxidation and NOx storage on Pt/Al2O3 and Pt/BaO/Al2O3. J Phys Chem B 105:6895–6906

    Article  CAS  Google Scholar 

  19. Mahzoul H, Brilhac JF, Gilot P (1999) Experimental and mechanistic study of NOx adsorption over NOx trap catalysts. Appl Catal B Environ 20:47–55

    Article  CAS  Google Scholar 

  20. Su Y, Amiridis MD (2004) In situ FTIR studies of the mechanism of NOx storage and reduction on Pt/Ba/Al2O3 catalysts. Catal Today 96:31–41

    Article  CAS  Google Scholar 

  21. Kabin KS, Khanna P, Muncrief RL, Medhekar W, Harold MP (2006) Monolith and TAP reactor studies of NOx storage on Pt/BaO/Al2O3: elucidating the mechanistic pathways and roles of Pt. Catal Today 114:72–85

    Article  CAS  Google Scholar 

  22. Desikusumastuti A, Happel M, Dumbuya K, Staudt T, Laurin M, Gottfried JM, Steinrück H-P, Libuda J (2008) Modeling NOx storage materials: on the formation of surface nitrites and nitrates and their identification by vibrational spectroscopy. J Phys Chem C 112:6477–6486

    Article  CAS  Google Scholar 

  23. Tsami A, Grillo F, Bowker M, Nix RM (2006) Model NSR catalysts: fabrication and reactivity of barium oxide layers on Cu(111). Surf Sci 600:3403–3418

    Article  CAS  Google Scholar 

  24. Szanyi J, Kwak JH, Hanson J, Wang C, Szailer T, Peden CHF (2005) Changing Morphology of BaO/Al2O3 during NO2 Uptake and Release. J Phys Chem B 109:7339–7344

    Article  CAS  Google Scholar 

  25. Hess C, Lunsford JH (2002) Mechanism for NO2 storage in barium oxide supported on magnesium oxides studies by in situ Raman spectroscopy. J Phys Chem B 106:6358–6360

    Article  CAS  Google Scholar 

  26. Chi Y, Chuang SSC (2003) Infrared and TPD studies of nitrates adsorbed on Tb4O7, La2O3, BaO, and MgO/γ–Al2O3. J Phys Chem B 107:1982–1987

    Article  Google Scholar 

  27. Cheng L, Ge Q (2008) Effect of BaO morphology on NOx abatement: NO2 interaction with Unsupported and γ–Al2O3-supported BaO. J Phys Chem C 112:16924–16931

    Article  CAS  Google Scholar 

  28. Cheng L, Ge Q (2007) Effect of γ–Al2O3 substrate on NO2 interaction with supported BaO clusters. Surf Sci 601:L65–L68

    Article  CAS  Google Scholar 

  29. Burch R, Fornasiero P, Watling TC (1998) Kinetics and mechanism of the reduction of NO by n-Octane over Pt/Al2O3 under lean-burn conditions. J Catal 176:204–214

    Article  CAS  Google Scholar 

  30. Broqvist P, Gronbeck H, Fridell E (2004) Characterization of NOx species adsorbed on BaO: experiment and theory. J Phys Chem B 108:3523–3530

    Article  CAS  Google Scholar 

  31. Xie S, Mestl G, Rosynek MP, Lunsford JH (1997) Decomposition of nitric oxide over barium oxide supported on magnesium oxide. 1. Catalytic results and in situ Raman spectroscopic evidence for a barium–nitro intermediate. J Am Chem Soc 119:10186–10191

    Article  CAS  Google Scholar 

  32. Klingenberg B, Vannice MA (1999) NO adsorption and decomposition on La2O3 studied by DRIFTS. Appl Catal B Environ 21:19–33

    Article  CAS  Google Scholar 

  33. Wang Y, Jacobi K, Ertl G (2003) Interaction of NO with the Stoichiometric RuO2(110) Surface. J Phys Chem B 107:13918–13924

    Article  CAS  Google Scholar 

  34. Rodriguez JA, Azad S, Wang L-Q, García J, Etxeberria A, Gonzalez L (2003) Electronic and chemical properties of mixed-metal oxides: adsorption and reaction of NO on SrTiO(100). J Chem Phys 118:6562–6571

    Article  CAS  Google Scholar 

  35. Ishihara T, Goto K (2011) Direct decomposition of NO over BaO/Y2O3 catalyst. Catal Today 164:484–488

    Article  CAS  Google Scholar 

  36. Schneider WF (2004) Qualitative differences in the adsorption chemistry of acidic (CO2, SOx) and amphiphilic (NOx) species on the alkaline earth oxides. J Phys Chem B 108:273–282

    Article  CAS  Google Scholar 

  37. Tutuianu M, Inderwildi OR, Bessler WG, Warnatz J (2006) Competitive adsorption of NO, NO2, CO2, and H2O on BaO(100): a quantum chemical study. J Phys Chem B 110:17484–17492

    Article  CAS  Google Scholar 

  38. Marta Branda M, Valentin CD, Pacchioni G (2004) NO and NO2 adsorption on terrace, step, and corner sites of the BaO Surface from DFT Calculations. J Phys Chem B 108:4752–4758

    Article  Google Scholar 

  39. Ferullo RM, Fuente SA, Branda MM, Castellani NJ (2007) Theoretical study of N2O2 interaction with BaO(1 0 0) surface. J Mol Struct THEOCHEM 818:57–64

    Article  CAS  Google Scholar 

  40. Zubieta C, Castellani NJ, Ferullo RM (1009) High reactivity of nitric oxide with peroxo groups on BaO particles DFT calculations. Comput Theor Chem 2013:1–7

    Google Scholar 

  41. Lu X, Xu X, Wang N, Zhang Q (1999) Adsorption and decomposition of NO on magnesium oxide: a quantum chemical study. J Phys Chem B 103:5657–5664

    Article  CAS  Google Scholar 

  42. Valentin CD, Pacchioni G, Abbet S, Heiz U (2002) Conversion of NO to N2O on MgO Thin Films. J Phys Chem B 106:7666–7673

    Article  Google Scholar 

  43. Valentin CD, Pacchioni G, Bernasconi M (2006) Ab Initio molecular dynamics simulation of NO reactivity on the CaO(001) Surface. J Phys Chem B 110:8357–8362

    Article  Google Scholar 

  44. Pacchioni G, Ricart JM, Illas F (1994) Ab initio cluster model calculations on the chemisorption of CO2 and SO2 probe molecules on MgO and CaO (100) Surfaces. A theoretical measure of oxide basicity. J Am Chem Soc 116:10152–10158

    Article  CAS  Google Scholar 

  45. Beck AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098–3100

    Article  Google Scholar 

  46. Becke AD (1993) Density functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  47. Slater JC (1974) Quantum theory of molecules and solids, vol 4. McGraw-Hill, New York

    Google Scholar 

  48. Vosko SH, Wilk L, Nusair M (1980) Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can J Phys 58:1200–1211

    Article  CAS  Google Scholar 

  49. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J Phys Chem 98:11623–11627

    Article  CAS  Google Scholar 

  50. Lee C, Yang W, Parr RG (1988) Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  51. Liu W-G, Goddard WA III (2012) First-principles study of the role of interconversion between NO2, N2O4, cis-ONO–NO, and trans-ONO–NO in chemical processes. J Am Chem Soc 134:12970–12978

    Article  CAS  Google Scholar 

  52. Xu X, Lu X, Wang NQ, Zhang QE (1995) Charge-Consistency Modelling of CO/NiO(100) Chemisorption System. Chem Phys Lett 235:541–547

    Article  CAS  Google Scholar 

  53. Xu X, Lu X, Wang NQ, Zhang QE (2004) Cluster modeling of chemisorption and reactions on metal oxide surfaces. Acta Phys Chim Sin 20:1045–1054

    CAS  Google Scholar 

  54. Xu X, Nakatsuji H, Lu X, Ehara M, Cai Y, Wang NQ, Zhang QE (1999) On the cluster modeling of metal oxides: case study of MgO and CO/MgO adsorption system. Theor Chem Acc 102:170–179

    Article  CAS  Google Scholar 

  55. Lu X, Xu X, Wang NQ, Zhang QE, Ehara M, Nakatsuji H (1998) Cluster modeling of metal oxides: how to cut out a cluster? Chem Phys Lett 291:445–452

    Article  CAS  Google Scholar 

  56. Xu X, Nakatsuji H, Ehara M, Lu X, Wang NQ, Zhang QE (1998) Cluster modeling of metal oxides: the influence of the surrounding point charges on the embedded cluster. Chem Phys Lett 292:282–288

    Article  CAS  Google Scholar 

  57. Wyckoff RWG (1963) Crystal structures, 2nd edn. Interscience, New York

    Google Scholar 

  58. Winter NW, Pitzer RM, Temple DK (1987) Theoretical study of a Cu+ ion impurity in a NaF host. J Chem Phys 86:3549–3556

    Article  CAS  Google Scholar 

  59. Nygren MA, Petterson LG, Barandiaran Z, Seijo L (1994) Bonding between CO and the MgO(001) surface: a modified picture. J Chem Phys 100:2010–2018

    Article  CAS  Google Scholar 

  60. Wadt WR, Hay PJ (1985) Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi. J Chem Phys 82:284–288

    Article  CAS  Google Scholar 

  61. Wadt WR, Hay PJ (1985) Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. J Chem Phys 82:299–310

    Article  Google Scholar 

  62. Frisch MJ et al (2003) Gaussian03. Gaussian Inc., Pittsburgh

    Google Scholar 

  63. Hehre WJ, Ditchfield R, Pople JA (1972) Self-consistent molecular-orbital methods. XII. Further extensions of Gaussian-type basis sets for use in molecular-orbital studies of organic molecules. J Chem Phys 56:2257–2261

    Article  CAS  Google Scholar 

  64. Miletic M, Gland JL, Hass KC, Schneider WF (2003) First-principles characterization of NOx adsorption on MgO. J Phys Chem B 107:157–163

    Article  CAS  Google Scholar 

  65. Lu N-X, Fu G, Xu X, Wan HL (2008) Mechanisms for O2 dissociation over the BaO (100) surface. J Chem Phys 128:034702 1–9

    Article  Google Scholar 

  66. Grönbeck H, Broqvist P, Panas I (2006) Fundamental aspects of NOx adsorption on BaO. Surf Sci 600:403–408

    Article  Google Scholar 

  67. Valentin CD, Figini A, Pacchioni G (2004) Adsorption of NO and NO2 on terrace and step sites and on oxygen vacancies of the CaO(001) Surface. Surf Sci 556:145–158

    Article  Google Scholar 

  68. Lu X, Xu X, Wang NQ, Zhang QE (1999) N2O decomposition on MgO and Li/MgO catalysts: a quantum chemical study. J Phys Chem B 103:3373–3379

    Article  CAS  Google Scholar 

  69. Lu X, Xu X, Wang NQ, Zhang QE, Ehara M, Nakatsuji H (1999) Heterolytic adsorption of H2 on ZnO(100) surface: an ab initio SPC cluster model study. J Phys Chem B103:2689–2695

    Article  Google Scholar 

  70. Lu X, Xu X, Wang NQ, Zhang QE (2000) Chemisorption-induced oligomerization of CO over strongly basic sites of MgO solid: a hybrid B3LYP study. J Phys Chem B104:10024–10031

    Article  Google Scholar 

  71. Fu G, Xu X, Lu X, Wan HL (2005) Mechanisms of initial propane activation on molybdenum oxides: a density functional theory study. J Phys Chem B 109:6416–6421

    Article  CAS  Google Scholar 

  72. Fu G, Xu X, Lu X, Wan HL (2005) Mechanisms of methane activation and transformation on molybdenum oxide based catalysts. J Am Chem Soc 127:3989–3996

    Article  CAS  Google Scholar 

  73. Fu G, Xu X, Wan HL (2006) Mechanism of methane oxidation by transition metal oxides: a cluster model study. Catal Today 117:133–137

    Article  CAS  Google Scholar 

  74. Fu G, Yi XD, Huang CJ, Xu X, Weng WZ, Xia WS, Wan HL (2007) Developing selective oxidation catalysts of light alkanes: from fundamental understanding to rational design. Surf Rev Lett 14:645–656

    Article  CAS  Google Scholar 

  75. Lu NX, Xu X (2011) Theoretical study of NOx/CO2/H2O adsorption on BaO(001) surface. Acta Chim Sin 69:1264–1268

    CAS  Google Scholar 

  76. Yuan R-M, Fu G, Xu X, Wan HL (2011) Brønsted-NH4 + mechanism versus nitrite mechanism: new insight into the selective catalytic reduction of NO by NH3. Phys Chem Chem Phys 13:453–460

    Article  CAS  Google Scholar 

  77. Yuan R-M, Fu G, Xu X, Wan HL (2011) Mechanisms of selective catalytic oxidation (SCO) of ammonia over vanadium oxides. J Phys Chem C 115:21218–21229

    Article  CAS  Google Scholar 

  78. Lunsford JH (1967) EPR study of NO adsorbed on magnesium oxide. J Chem Phys 46:4347–4351

    Article  CAS  Google Scholar 

  79. Paganini MC, Chiesa M, Martino P, Giamello E (2002) EPR study of the surface basicity of calcium oxide. 1. The CaO–NO chemistry. J Phys Chem B 106:12531–12536

    Article  CAS  Google Scholar 

  80. Laane J, Olsen JR (1980) Characterization of nitrogen oxides by vibrational spectroscopy. Prog Inorg Chem 27:465–513

    Article  CAS  Google Scholar 

  81. Palmer MS, Neurock M (2002) Periodic density functional theory study of the dissociative adsorption of molecular oxygen over La2O3. J Phys Chem B 106:6543–6547

    Article  CAS  Google Scholar 

  82. Kapteijn F, Rodriguez-Mirasol J, Moulijn JA (1996) Heterogeneous catalytic decomposition of nitrous oxide. Appl Catal B Environ 9:25–64

    Article  CAS  Google Scholar 

  83. Karlsen EJ, Pettersson LGM (2002) N2O decomposition over BaO: including effects of coverage. J Phys Chem B 106:5719–5721

    Article  CAS  Google Scholar 

  84. Hadjiivanov KI (2000) Identification of Neutral and charged NxOy surface species by IR spectroscopy. Catal Rev Sci Eng 42:71–144

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Science and Technology (2013CB834606, 2011CB808505), National Natural Science Foundation of China (21133004), and the Natural Science Foundation of Shandong Province (ZR2010BM041), China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jing-Cong Tao or Xin Xu.

Additional information

Dedicated to Professor Guosen Yan and published as part of the special collection of articles celebrating his 85th birthday.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 58 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, NX., Tao, JC. & Xu, X. NO adsorption and transformation on the BaO surfaces from density functional theory calculations. Theor Chem Acc 133, 1565 (2014). https://doi.org/10.1007/s00214-014-1565-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-014-1565-7

Keywords

Navigation